These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 36898310)
1. Distinct influence of conventional and biodegradable microplastics on microbe-driving nitrogen cycling processes in soils and plastispheres as evaluated by metagenomic analysis. Hu X; Gu H; Sun X; Wang Y; Liu J; Yu Z; Li Y; Jin J; Wang G J Hazard Mater; 2023 Jun; 451():131097. PubMed ID: 36898310 [TBL] [Abstract][Full Text] [Related]
2. Metagenomic exploration of microbial and enzymatic traits involved in microplastic biodegradation. Hu X; Gu H; Sun X; Wang Y; Liu J; Yu Z; Li Y; Jin J; Wang G Chemosphere; 2024 Jan; 348():140762. PubMed ID: 38006912 [TBL] [Abstract][Full Text] [Related]
3. Enhancing soil gross nitrogen transformation through regulation of microbial nitrogen-cycling genes by biodegradable microplastics. Zhang H; Zhu W; Zhang J; Müller C; Wang L; Jiang R J Hazard Mater; 2024 Oct; 478():135528. PubMed ID: 39154476 [TBL] [Abstract][Full Text] [Related]
4. Succession of soil bacterial communities and network patterns in response to conventional and biodegradable microplastics: A microcosmic study in Mollisol. Hu X; Gu H; Wang Y; Liu J; Yu Z; Li Y; Jin J; Liu X; Dai Q; Wang G J Hazard Mater; 2022 Aug; 436():129218. PubMed ID: 35739740 [TBL] [Abstract][Full Text] [Related]
5. Unveiling microplastic's role in nitrogen cycling: Metagenomic insights from estuarine sediment microcosms. Wang X; Li J; Wang D; Sun C; Zhang X; Zhao J; Teng J; Wang Q Environ Pollut; 2024 Oct; 359():124591. PubMed ID: 39043311 [TBL] [Abstract][Full Text] [Related]
6. Deciphering the Mechanisms Shaping the Plastisphere Microbiota in Soil. Sun Y; Shi J; Wang X; Ding C; Wang J mSystems; 2022 Aug; 7(4):e0035222. PubMed ID: 35880896 [TBL] [Abstract][Full Text] [Related]
7. Polyethylene microplastic and soil nitrogen dynamics: Unraveling the links between functional genes, microbial communities, and transformation processes. Zhou Z; Hua J; Xue J J Hazard Mater; 2023 Sep; 458():131857. PubMed ID: 37354715 [TBL] [Abstract][Full Text] [Related]
8. The plastisphere of biodegradable and conventional microplastics from residues exhibit distinct microbial structure, network and function in plastic-mulching farmland. Li K; Jia W; Xu L; Zhang M; Huang Y J Hazard Mater; 2023 Jan; 442():130011. PubMed ID: 36155295 [TBL] [Abstract][Full Text] [Related]
9. Discrepant soil microbial community and C cycling function responses to conventional and biodegradable microplastics. Yu H; Liu X; Qiu X; Sun T; Cao J; Lv M; Sui Z; Wang Z; Jiao S; Xu Y; Wang F J Hazard Mater; 2024 May; 470():134176. PubMed ID: 38569347 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable PBAT microplastics adversely affect pakchoi (Brassica chinensis L.) growth and the rhizosphere ecology: Focusing on rhizosphere microbial community composition, element metabolic potential, and root exudates. Han Y; Teng Y; Wang X; Wen D; Gao P; Yan D; Yang N Sci Total Environ; 2024 Feb; 912():169048. PubMed ID: 38061654 [TBL] [Abstract][Full Text] [Related]
11. Effects of microplastics and nitrogen deposition on soil multifunctionality, particularly C and N cycling. Zhang S; Pei L; Zhao Y; Shan J; Zheng X; Xu G; Sun Y; Wang F J Hazard Mater; 2023 Jun; 451():131152. PubMed ID: 36934700 [TBL] [Abstract][Full Text] [Related]
12. Potential environmental risks of field bio/non-degradable microplastic from mulching residues in farmland: Evidence from metagenomic analysis of plastisphere. Li K; Xu L; Bai X; Zhang G; Zhang M; Huang Y J Hazard Mater; 2024 Mar; 465():133428. PubMed ID: 38198862 [TBL] [Abstract][Full Text] [Related]
13. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Fei Y; Huang S; Zhang H; Tong Y; Wen D; Xia X; Wang H; Luo Y; Barceló D Sci Total Environ; 2020 Mar; 707():135634. PubMed ID: 31761364 [TBL] [Abstract][Full Text] [Related]
14. Polyethylene microplastics alter soil microbial community assembly and ecosystem multifunctionality. Liu Z; Wen J; Liu Z; Wei H; Zhang J Environ Int; 2024 Jan; 183():108360. PubMed ID: 38128384 [TBL] [Abstract][Full Text] [Related]
15. Effects of microplastics on N Zhong L; Li X; Sun Y; Xiao H; Tang Y; Wang R; Su X Chemosphere; 2024 Mar; 351():141256. PubMed ID: 38246503 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes. Wang J; Liu W; Zeb A; Wang Q; Mo F; Shi R; Sun Y; Wang F J Agric Food Chem; 2024 Jul; 72(30):16674-16686. PubMed ID: 39021203 [TBL] [Abstract][Full Text] [Related]
17. Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling - A review. Aralappanavar VK; Mukhopadhyay R; Yu Y; Liu J; Bhatnagar A; Praveena SM; Li Y; Paller M; Adyel TM; Rinklebe J; Bolan NS; Sarkar B Sci Total Environ; 2024 May; 924():171435. PubMed ID: 38438042 [TBL] [Abstract][Full Text] [Related]
18. Effects of conventional versus biodegradable microplastic exposure on oxidative stress and gut microorganisms in earthworms: A comparison with two different soils. Yu H; Shi L; Fan P; Xi B; Tan W Chemosphere; 2022 Nov; 307(Pt 3):135940. PubMed ID: 35963381 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable film mulching increases soil microbial network complexity and decreases nitrogen-cycling gene abundance. Zhang H; Shu D; Zhang J; Liu X; Wang K; Jiang R Sci Total Environ; 2024 Jul; 933():172874. PubMed ID: 38703840 [TBL] [Abstract][Full Text] [Related]
20. Differential fungal assemblages and functions between the plastisphere of biodegradable and conventional microplastics in farmland. Li K; Xu L; Bai X; Zhang G; Zhang M; Huang Y Sci Total Environ; 2024 Jan; 906():167478. PubMed ID: 37804989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]