These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36898353)

  • 1. Numerical simulation of mechanical tests on a living skin using anisotropic hyperelastic law.
    Alliliche W; Renaud C; Cros JM; Feng ZQ
    J Mech Behav Biomed Mater; 2023 May; 141():105755. PubMed ID: 36898353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic hyperelastic behavior of soft biological tissues.
    Chen ZW; Joli P; Feng ZQ
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1436-44. PubMed ID: 25127194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.
    Groves RB; Coulman SA; Birchall JC; Evans SL
    J Mech Behav Biomed Mater; 2013 Feb; 18():167-80. PubMed ID: 23274398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of constitutive materials of bi-layer soft tissues from multimodal indentations.
    Fougeron N; Oddes Z; Ashkenazi A; Solav D
    J Mech Behav Biomed Mater; 2024 Jul; 155():106572. PubMed ID: 38754153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for determining the ogden parameters of soft materials using indentation experiments.
    Li L; Masen M
    J Mech Behav Biomed Mater; 2024 Jul; 155():106574. PubMed ID: 38761525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.
    Valero C; Navarro B; Navajas D; García-Aznar JM
    J Mech Behav Biomed Mater; 2016 Sep; 62():222-235. PubMed ID: 27214690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM.
    Tang CY; Ng GY; Wang ZW; Tsui CP; Zhang G
    Biomed Mater Eng; 2011; 21(1):9-24. PubMed ID: 21537060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response.
    Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P
    J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional visco-hyperelastic FE model for simulating the mechanical dynamic response of preloaded phalanges.
    Noël C
    Med Eng Phys; 2018 Nov; 61():41-50. PubMed ID: 30262138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a new constitutive model for abdominal muscles.
    Tuset L; Fortuny G; Herrero J; Puigjaner D; López JM
    Comput Methods Programs Biomed; 2019 Oct; 179():104988. PubMed ID: 31443865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the mechanical behaviour of the foot skin.
    Fontanella CG; Carniel EL; Forestiero A; Natali AN
    Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the damage-induced softening behavior of brain white matter using a coupled hyperelasticty-damage model.
    He G; Xia B; Feng Y; Chen Y; Fan L; Zhang D
    J Mech Behav Biomed Mater; 2023 May; 141():105753. PubMed ID: 36898357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hyperelastic model to capture the mechanical behaviour and histological aspects of the soft tissues.
    Dwivedi KK; Lakhani P; Kumar S; Kumar N
    J Mech Behav Biomed Mater; 2022 Feb; 126():105013. PubMed ID: 34920323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data.
    Balaban G; Alnæs MS; Sundnes J; Rognes ME
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1509-1521. PubMed ID: 27008196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.