These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36899517)

  • 1. Optimal search mapping among sensors in heterogeneous smart homes.
    Yu Y; Hao Z; Li G; Liu Y; Yang R; Liu H
    Math Biosci Eng; 2023 Jan; 20(2):1960-1980. PubMed ID: 36899517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sMRT: Multi-Resident Tracking in Smart Homes With Sensor Vectorization.
    Wang T; Cook DJ
    IEEE Trans Pattern Anal Mach Intell; 2021 Aug; 43(8):2809-2821. PubMed ID: 32070942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.
    Ahvar E; Lee GM; Han SN; Crespi N; Khan I
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27355951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the impact of furniture on communications performance for ubiquitous deployment of Wireless Sensor Networks in smart homes.
    Bleda AL; Jara AJ; Maestre R; Santa G; Gómez Skarmeta AF
    Sensors (Basel); 2012; 12(5):6463-96. PubMed ID: 22778653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tree Alignment Based on Needleman-Wunsch Algorithm for Sensor Selection in Smart Homes.
    Chua SL; Foo LK
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28820438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor Selection to Support Practical Use of Health-Monitoring Smart Environments.
    Cook DJ; Holder LB
    Data Min Knowl Discov; 2011 Jul; 1(4):339-351. PubMed ID: 21760755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radial Basis Function Neural Network with Localized Stochastic-Sensitive Autoencoder for Home-Based Activity Recognition.
    Ng WWY; Xu S; Wang T; Zhang S; Nugent C
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Graphs to Perform Effective Sensor-Based Human Activity Recognition in Smart Homes.
    P S; Plötz T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Activity Recognition in Smart Homes Using Delayed Fuzzy Temporal Windows on Binary Sensors.
    Hamad RA; Hidalgo AS; Bouguelia MR; Estevez ME; Quero JM
    IEEE J Biomed Health Inform; 2020 Feb; 24(2):387-395. PubMed ID: 31135373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Rough Sets to Improve Activity Recognition Based on Sensor Data.
    Guesgen HW
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning.
    Bouchabou D; Nguyen SM; Lohr C; LeDuc B; Kanellos I
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random forest algorithms for recognizing daily life activities using plantar pressure information: a smart-shoe study.
    Ren D; Aubert-Kato N; Anzai E; Ohta Y; Tripette J
    PeerJ; 2020; 8():e10170. PubMed ID: 33194400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensor and video based ontology for activity recognition in smart environments.
    Mitchell D; Morrow PJ; Nugent CD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5932-5. PubMed ID: 25571347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Smart Sensing Architecture for Domestic Monitoring: Methodological Approach and Experimental Validation.
    Monteriù A; Prist MR; Frontoni E; Longhi S; Pietroni F; Casaccia S; Scalise L; Cenci A; Romeo L; Berta R; Pescosolido L; Orlandi G; Revel GM
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open-Source Data Collection and Data Sets for Activity Recognition in Smart Homes.
    Köckemann U; Alirezaie M; Renoux J; Tsiftes N; Ahmed MU; Morberg D; Lindén M; Loutfi A
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensor technology for smart homes.
    Ding D; Cooper RA; Pasquina PF; Fici-Pasquina L
    Maturitas; 2011 Jun; 69(2):131-6. PubMed ID: 21531517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Graph-Attention-Based Method for Single-Resident Daily Activity Recognition in Smart Homes.
    Ye J; Jiang H; Zhong J
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Genetic Algorithm Approach to Motion Sensor Placement in Smart Environments.
    Thomas BL; Crandall AS; Cook DJ
    J Reliab Intell Environ; 2016 Apr; 2(1):3-16. PubMed ID: 27453810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pure random search for ambient sensor distribution optimisation in a smart home environment.
    Poland MP; Nugent CD; Wang H; Chen L
    Technol Health Care; 2011; 19(3):137-60. PubMed ID: 21610296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.