These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36899584)

  • 1. The SAITS epidemic spreading model and its combinational optimal suppression control.
    Ding W; Ding L; Kong Z; Liu F
    Math Biosci Eng; 2023 Jan; 20(2):3342-3354. PubMed ID: 36899584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global investigation for an "SIS" model for COVID-19 epidemic with asymptomatic infection.
    Alharbi MH
    Math Biosci Eng; 2023 Jan; 20(3):5298-5315. PubMed ID: 36896546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal control of epidemic size and duration with limited resources.
    Bolzoni L; Bonacini E; Della Marca R; Groppi M
    Math Biosci; 2019 Sep; 315():108232. PubMed ID: 31330135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressing epidemic spreading by optimizing the allocation of resources between prevention and treatment.
    Li J; Yang C; Ma X; Gao Y; Fu C; Yang H
    Chaos; 2019 Nov; 29(11):113108. PubMed ID: 31779370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of nodes of information dissemination on epidemic spreading in dynamic multiplex networks.
    Feng M; Li X; Li Y; Li Q
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal control of a social epidemic model with media coverage.
    Huo HF; Huang SR; Wang XY; Xiang H
    J Biol Dyn; 2017 Dec; 11(1):226-243. PubMed ID: 28492097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of optimal control to the onchocerciasis transmission model with treatment.
    Omondi EO; Orwa TO; Nyabadza F
    Math Biosci; 2018 Mar; 297():43-57. PubMed ID: 29175094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: the effect of DOTS strategy and further control.
    Liu S; Bi Y; Liu Y
    Theor Biol Med Model; 2020 May; 17(1):6. PubMed ID: 32362279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidemic spreading with activity-driven awareness diffusion on multiplex network.
    Guo Q; Lei Y; Jiang X; Ma Y; Huo G; Zheng Z
    Chaos; 2016 Apr; 26(4):043110. PubMed ID: 27131489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non Pharmaceutical Interventions for Optimal Control of COVID-19.
    Zamir M; Shah Z; Nadeem F; Memood A; Alrabaiah H; Kumam P
    Comput Methods Programs Biomed; 2020 Nov; 196():105642. PubMed ID: 32688137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the optimal control of SIR model with Erlang-distributed infectious period: isolation strategies.
    Bolzoni L; Della Marca R; Groppi M
    J Math Biol; 2021 Sep; 83(4):36. PubMed ID: 34550465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Dynamics of COVID-19 in Nigeria.
    Adewole MO; Onifade AA; Abdullah FA; Kasali F; Ismail AIM
    Int J Appl Comput Math; 2021; 7(3):67. PubMed ID: 33898652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical investigation of an "SVEIR" epidemic model for the measles transmission.
    Hajji ME; Albargi AH
    Math Biosci Eng; 2022 Jan; 19(3):2853-2875. PubMed ID: 35240810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics Analysis of a Wireless Rechargeable Sensor Network for Virus Mutation Spreading.
    Liu G; Peng Z; Liang Z; Li J; Cheng L
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34066582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SIRD epidemic model with community structure.
    Yang JX
    Chaos; 2021 Jan; 31(1):013102. PubMed ID: 33754780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative spreading processes in multiplex networks.
    Wei X; Chen S; Wu X; Ning D; Lu JA
    Chaos; 2016 Jun; 26(6):065311. PubMed ID: 27368800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex dynamics and control analysis of an epidemic model with non-monotone incidence and saturated treatment.
    Saha P; Ghosh U
    Int J Dyn Control; 2023; 11(1):301-323. PubMed ID: 35637768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of an SEIR epidemic model with saturated incidence and saturated treatment function.
    Zhang J; Jia J; Song X
    ScientificWorldJournal; 2014; 2014():910421. PubMed ID: 25202740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time growth rate for general stochastic SIR epidemics on unclustered networks.
    Pellis L; Spencer SE; House T
    Math Biosci; 2015 Jul; 265():65-81. PubMed ID: 25916891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The epidemic model based on the approximation for third-order motifs on networks.
    Li J; Li W; Jin Z
    Math Biosci; 2018 Mar; 297():12-26. PubMed ID: 29330075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.