These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36899590)

  • 1. Existence, multiplicity and non-existence of solutions for modified Schrödinger-Poisson systems.
    Zhang X; Huang C
    Math Biosci Eng; 2023 Jan; 20(2):3482-3503. PubMed ID: 36899590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplicity and asymptotic behavior of solutions for Kirchhoff type equations involving the Hardy-Sobolev exponent and singular nonlinearity.
    Shen L
    J Inequal Appl; 2018; 2018(1):213. PubMed ID: 30839566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well.
    Du M; Tian L; Wang J; Zhang F
    J Math Phys; 2016 Mar; 57(3):031502. PubMed ID: 27013766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global existence and blow up of solutions for a class of coupled parabolic systems with logarithmic nonlinearity.
    Deng Q; Zeng F; Wang D
    Math Biosci Eng; 2022 Jun; 19(8):8580-8600. PubMed ID: 35801478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial boundary value problem for a class of p-Laplacian equations with logarithmic nonlinearity.
    Zeng F; Huang Y; Shi P
    Math Biosci Eng; 2021 May; 18(4):3957-3976. PubMed ID: 34198420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incoherent localized structures and hidden coherent solitons from the gravitational instability of the Schrödinger-Poisson equation.
    Garnier J; Baudin K; Fusaro A; Picozzi A
    Phys Rev E; 2021 Nov; 104(5-1):054205. PubMed ID: 34942767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian.
    Sun G; Mai A
    ScientificWorldJournal; 2014; 2014():276372. PubMed ID: 24959604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical stabilization of solitons in cubic-quintic nonlinear Schrödinger model.
    Abdullaev FKh; Garnier J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):035603. PubMed ID: 16241508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solutions to the nonlinear Schrödinger systems involving the fractional Laplacian.
    Qu M; Yang L
    J Inequal Appl; 2018; 2018(1):297. PubMed ID: 30839756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eigenvalue cutoff in the cubic-quintic nonlinear Schrödinger equation.
    Prytula V; Vekslerchik V; Pérez-García VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):027601. PubMed ID: 18850979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New results on the existences of solutions of the Dirichlet problem with respect to the Schrödinger-prey operator and their applications.
    Chen X; Zhang L
    J Inequal Appl; 2017; 2017(1):143. PubMed ID: 28680246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solutions for the quasi-linear elliptic problems involving the critical Sobolev exponent.
    Sang Y; Guo S
    J Inequal Appl; 2017; 2017(1):217. PubMed ID: 28979079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Existence of multiple solutions for a p-Kirchhoff problem with nonlinear boundary conditions.
    Xiu Z; Chen C
    ScientificWorldJournal; 2013; 2013():516093. PubMed ID: 23983636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sharp conditions for a class of nonlinear Schrödinger equations.
    Liu Y; Liu J; Yu T
    Math Biosci Eng; 2023 Jan; 20(2):3721-3730. PubMed ID: 36899601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple solutions for a singular quasilinear elliptic system.
    Chen L; Chen C; Xiu Z
    ScientificWorldJournal; 2013; 2013():278013. PubMed ID: 24282377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Existence of weak solutions of stochastic delay differential systems with Schrödinger-Brownian motions.
    Sun J; Kou L; Guo G; Zhao G; Wang Y
    J Inequal Appl; 2018; 2018(1):100. PubMed ID: 29720848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified fractional variational iteration method for solving the generalized time-space fractional Schrödinger equation.
    Hong B; Lu D
    ScientificWorldJournal; 2014; 2014():964643. PubMed ID: 25276865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic solitons in the quadratic-cubic nonlinear Schrödinger equation under nonlinearity management.
    Fujioka J; Cortés E; Pérez-Pascual R; Rodríguez RF; Espinosa A; Malomed BA
    Chaos; 2011 Sep; 21(3):033120. PubMed ID: 21974655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear Schrödinger equations with amplitude-dependent Wadati potentials.
    Zezyulin DA
    Phys Rev E; 2022 Nov; 106(5-1):054209. PubMed ID: 36559427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forced nonlinear Schrödinger equation with arbitrary nonlinearity.
    Cooper F; Khare A; Quintero NR; Mertens FG; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046607. PubMed ID: 22680598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.