These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36899597)

  • 1. Teleoperation control of a wheeled mobile robot based on Brain-machine Interface.
    Zhao SN; Cui Y; He Y; He Z; Diao Z; Peng F; Cheng C
    Math Biosci Eng; 2023 Jan; 20(2):3638-3660. PubMed ID: 36899597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An MVMD-CCA Recognition Algorithm in SSVEP-Based BCI and Its Application in Robot Control.
    Wang K; Zhai DH; Xiong Y; Hu L; Xia Y
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2159-2167. PubMed ID: 34951857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface.
    Deng X; Yu ZL; Lin C; Gu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):328-338. PubMed ID: 31825869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG error potentials detection and classification using time-frequency features for robot reinforcement learning.
    Boubchir L; Touati Y; Daachi B; Chérif AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1761-4. PubMed ID: 26736619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A BCI using VEP for continuous control of a mobile robot.
    Kapeller C; Hintermuller C; Abu-Alqumsan M; Pruckl R; Peer A; Guger C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5254-7. PubMed ID: 24110921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SSVEP recognition using common feature analysis in brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Apr; 244():8-15. PubMed ID: 24727656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 11. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of an SSVEP-based intelligent home service robot system.
    Zhang Y; Gao Q; Song Y; Wang Z
    Technol Health Care; 2021; 29(3):541-556. PubMed ID: 33074201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.
    Jiao Y; Zhang Y; Wang Y; Wang B; Jin J; Wang X
    Int J Neural Syst; 2018 May; 28(4):1750039. PubMed ID: 28982285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SSVEP-Based Brain-Computer Interface Controlled Robotic Platform With Velocity Modulation.
    Zhang Y; Qian K; Xie SQ; Shi C; Li J; Zhang ZQ
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3448-3458. PubMed ID: 37624718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-Spectral CCA (SS-CCA): A novel approach for frequency recognition in SSVEP-based BCI.
    Norizadeh Cherloo M; Kashefi Amiri H; Daliri MR
    J Neurosci Methods; 2022 Apr; 371():109499. PubMed ID: 35151668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel system of SSVEP-based human-robot coordination.
    Han X; Lin K; Gao S; Gao X
    J Neural Eng; 2019 Feb; 16(1):016006. PubMed ID: 30221626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mobile SSVEP-based brain-computer interface for freely moving humans: the robustness of canonical correlation analysis to motion artifacts.
    Lin YP; Wang Y; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1350-3. PubMed ID: 24109946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface.
    Chen YF; Atal K; Xie SQ; Liu Q
    J Neural Eng; 2017 Aug; 14(4):046028. PubMed ID: 28357991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm.
    Quiles E; Dadone J; Chio N; García E
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.