These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36899614)

  • 21. An evaluation of COVID-19 transmission control in Wenzhou using a modified SEIR model.
    Li W; Gong J; Zhou J; Zhang L; Wang D; Li J; Shi C; Fan H
    Epidemiol Infect; 2021 Jan; 149():e2. PubMed ID: 33413715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of awareness diffusion on the spread of COVID-19 based on a two-layer SEIR/V-UA epidemic model.
    Zhao X; Zhou Q; Wang A; Zhu F; Meng Z; Zuo C
    J Med Virol; 2021 Jul; 93(7):4342-4350. PubMed ID: 33738825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting the local COVID-19 outbreak around the world with meteorological conditions: a model-based qualitative study.
    Chen B; Liang H; Yuan X; Hu Y; Xu M; Zhao Y; Zhang B; Tian F; Zhu X
    BMJ Open; 2020 Nov; 10(11):e041397. PubMed ID: 33199426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mathematical computations on epidemiology: a case study of the novel coronavirus (SARS-CoV-2).
    Batabyal S; Batabyal A
    Theory Biosci; 2021 Jun; 140(2):123-138. PubMed ID: 33682078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A network-based model to explore the role of testing in the epidemiological control of the COVID-19 pandemic.
    Cui Y; Ni S; Shen S
    BMC Infect Dis; 2021 Jan; 21(1):58. PubMed ID: 33435892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The suppression effect of emotional contagion in the COVID-19 pandemic: A multi-layer hybrid modelling and simulation approach.
    Guo X; Tong J; Chen P; Fan W
    PLoS One; 2021; 16(7):e0253579. PubMed ID: 34320025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Travel-related control measures to contain the COVID-19 pandemic: a rapid review.
    Burns J; Movsisyan A; Stratil JM; Coenen M; Emmert-Fees KM; Geffert K; Hoffmann S; Horstick O; Laxy M; Pfadenhauer LM; von Philipsborn P; Sell K; Voss S; Rehfuess E
    Cochrane Database Syst Rev; 2020 Oct; 10():CD013717. PubMed ID: 33502002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom.
    Liu Z; Magal P; Webb G
    J Theor Biol; 2021 Jan; 509():110501. PubMed ID: 32980371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. COVID-19 modeling based on real geographic and population data.
    Baysazan E; Berker AN; Mandal H; Kaygusuz H
    Turk J Med Sci; 2023 Feb; 53(1):333-339. PubMed ID: 36945958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agent Simulation Model of COVID-19 Epidemic Agent-Based on GIS: A Case Study of Huangpu District, Shanghai.
    Dong T; Dong W; Xu Q
    Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36011877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the COVID-19 Epidemic With Multi-Population and Control Strategies in the United States.
    Sun D; Long X; Liu J
    Front Public Health; 2021; 9():751940. PubMed ID: 35047470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Syndromic Surveillance Using Structured Telehealth Data: Case Study of the First Wave of COVID-19 in Brazil.
    Boaventura VS; Grave M; Cerqueira-Silva T; Carreiro R; Pinheiro A; Coutinho A; Barral Netto M
    JMIR Public Health Surveill; 2023 Jan; 9():e40036. PubMed ID: 36692925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Spatiotemporal changes of COVID-19 outbreak in Shanghai].
    Fan JY; Shen JY; Hu M; Zhao Y; Lin JS; Cao GW
    Zhonghua Liu Xing Bing Xue Za Zhi; 2022 Nov; 43(11):1699-1704. PubMed ID: 36444450
    [No Abstract]   [Full Text] [Related]  

  • 34. A stochastic numerical analysis based on hybrid NAR-RBFs networks nonlinear SITR model for novel COVID-19 dynamics.
    Shoaib M; Raja MAZ; Sabir MT; Bukhari AH; Alrabaiah H; Shah Z; Kumam P; Islam S
    Comput Methods Programs Biomed; 2021 Apr; 202():105973. PubMed ID: 33610034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can the establishment of national sanitary cities better resist the impact of COVID-19?
    Tianqi G; Chunyan Z; Renjun S; Bo L
    Front Public Health; 2023; 11():1041355. PubMed ID: 36923044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid Model-Based Simulation Analysis on the Effects of Social Distancing Policy of the COVID-19 Epidemic.
    Kang BG; Park HM; Jang M; Seo KM
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compartmental structures used in modeling COVID-19: a scoping review.
    Kong L; Duan M; Shi J; Hong J; Chang Z; Zhang Z
    Infect Dis Poverty; 2022 Jun; 11(1):72. PubMed ID: 35729655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible, Freely Available Stochastic Individual Contact Model for Exploring COVID-19 Intervention and Control Strategies: Development and Simulation.
    Churches T; Jorm L
    JMIR Public Health Surveill; 2020 Sep; 6(3):e18965. PubMed ID: 32568729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An intelligent forecast for COVID-19 based on single and multiple features.
    Wang Y; Zhang Y; Zhang X; Liang H; Li G; Wang X
    Int J Intell Syst; 2022 Nov; 37(11):9339-9356. PubMed ID: 36247714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China).
    Yu H; Sun X; Solvang WD; Zhao X
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32182811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.