These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36899626)

  • 1. Multi-modal brain MRI images enhancement based on framelet and local weights super-resolution.
    Xu Y; Dai S; Song H; Du L; Chen Y
    Math Biosci Eng; 2023 Jan; 20(2):4258-4273. PubMed ID: 36899626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Multimodality-based super-resolution reconstruction for routine brain magnetic resonance images].
    Cao Z; Liu G; Zhang Z; Shi F; Zhang Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2022 Jul; 42(7):1019-1025. PubMed ID: 35869764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity.
    Zheng H; Qu X; Bai Z; Liu Y; Guo D; Dong J; Peng X; Chen Z
    BMC Med Imaging; 2017 Jan; 17(1):6. PubMed ID: 28095792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Rank and Framelet Based Sparsity Decomposition for Interventional MRI Reconstruction.
    He Z; Zhu YN; Qiu S; Wang T; Zhang C; Sun B; Zhang X; Feng Y
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2294-2304. PubMed ID: 35015631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A super-resolution framework for the reconstruction of T2-weighted (T2w) time-resolved (TR) 4DMRI using T1w TR-4DMRI as the guidance.
    Nie X; Saleh Z; Kadbi M; Zakian K; Deasy J; Rimner A; Li G
    Med Phys; 2020 Jul; 47(7):3091-3102. PubMed ID: 32166757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pixelwise Gradient Model for Image Fusion (PGMIF): a multi-sequence magnetic resonance imaging (MRI) fusion model for tumor contrast enhancement of nasopharyngeal carcinoma.
    Cheng KH; Li W; Lee FK; Li T; Cai J
    Quant Imaging Med Surg; 2024 Jun; 14(6):4098-4109. PubMed ID: 38846293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation.
    Assefa D; Keller H; Ménard C; Laperriere N; Ferrari RJ; Yeung I
    Med Phys; 2010 Apr; 37(4):1722-36. PubMed ID: 20443493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An edge-directed interpolation method for fetal spine MR images.
    Yu S; Zhang R; Wu S; Hu J; Xie Y
    Biomed Eng Online; 2013 Oct; 12():102. PubMed ID: 24112777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two novel PET image restoration methods guided by PET-MR kernels: Application to brain imaging.
    Tahaei MS; Reader AJ; Collins DL
    Med Phys; 2019 May; 46(5):2085-2102. PubMed ID: 30710342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study.
    Mayerhoefer ME; Szomolanyi P; Jirak D; Berg A; Materka A; Dirisamer A; Trattnig S
    Invest Radiol; 2009 Jul; 44(7):405-11. PubMed ID: 19465863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusing multi-scale information in convolution network for MR image super-resolution reconstruction.
    Liu C; Wu X; Yu X; Tang Y; Zhang J; Zhou J
    Biomed Eng Online; 2018 Aug; 17(1):114. PubMed ID: 30144798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR image reconstruction based on framelets and nonlocal total variation using split Bregman method.
    Gopi VP; Palanisamy P; Wahid KA; Babyn P
    Int J Comput Assist Radiol Surg; 2014 May; 9(3):459-72. PubMed ID: 24014321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast single image super-resolution using estimated low-frequency k-space data in MRI.
    Luo J; Mou Z; Qin B; Li W; Yang F; Robini M; Zhu Y
    Magn Reson Imaging; 2017 Jul; 40():1-11. PubMed ID: 28366758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Adaptive regularized super-resolution reconstruction for magnetic resonance images].
    Peng J; Xu QF; Feng YQ; Lv QW; Chen WF
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Oct; 31(10):1705-8. PubMed ID: 22027772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LRTV: MR Image Super-Resolution With Low-Rank and Total Variation Regularizations.
    Shi F; Cheng J; Wang L; Yap PT; Shen D
    IEEE Trans Med Imaging; 2015 Dec; 34(12):2459-66. PubMed ID: 26641727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel Tungsten-based fiducial marker for multi-modal brain imaging.
    Ose T; Autio JA; Ohno M; Nishigori K; Tanki N; Igesaka A; Mori T; Doi H; Wada Y; Nakajima I; Watabe H; Hayashi T
    J Neurosci Methods; 2019 Jul; 323():22-31. PubMed ID: 31082408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image super-resolution using progressive generative adversarial networks for medical image analysis.
    Mahapatra D; Bozorgtabar B; Garnavi R
    Comput Med Imaging Graph; 2019 Jan; 71():30-39. PubMed ID: 30472408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-resolution of brain tumor MRI images based on deep learning.
    Zhou Z; Ma A; Feng Q; Wang R; Cheng L; Chen X; Yang X; Liao K; Miao Y; Qiu Y
    J Appl Clin Med Phys; 2022 Nov; 23(11):e13758. PubMed ID: 36107021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
    Nie J; Xue Z; Liu T; Young GS; Setayesh K; Guo L; Wong ST
    Comput Med Imaging Graph; 2009 Sep; 33(6):431-41. PubMed ID: 19446435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.