These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 36899851)

  • 21. Analysis of excitation-contraction-coupling components in chronically stimulated canine skeletal muscle.
    Ohlendieck K; Briggs FN; Lee KF; Wechsler AW; Campbell KP
    Eur J Biochem; 1991 Dec; 202(3):739-47. PubMed ID: 1662614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Priority Strategy of Intracellular Ca
    Zhang J; Li X; Ismail F; Xu S; Wang Z; Peng X; Yang C; Chang H; Wang H; Gao Y
    Cells; 2019 Dec; 9(1):. PubMed ID: 31877883
    [No Abstract]   [Full Text] [Related]  

  • 23. Lessons from calsequestrin-1 ablation in vivo: much more than a Ca(2+) buffer after all.
    Protasi F; Paolini C; Canato M; Reggiani C; Quarta M
    J Muscle Res Cell Motil; 2011 Dec; 32(4-5):257-70. PubMed ID: 22130610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle.
    Lamboley CR; Murphy RM; McKenna MJ; Lamb GD
    J Physiol; 2014 Mar; 592(6):1381-95. PubMed ID: 24469076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A 3D diffusional-compartmental model of the calcium dynamics in cytosol, sarcoplasmic reticulum and mitochondria of murine skeletal muscle fibers.
    Marcucci L; Canato M; Protasi F; Stienen GJM; Reggiani C
    PLoS One; 2018; 13(7):e0201050. PubMed ID: 30048500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calsequestrin 1 Is an Active Partner of Stromal Interaction Molecule 2 in Skeletal Muscle.
    Jeong SY; Oh MR; Choi JH; Woo JS; Lee EH
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variable luminal sarcoplasmic reticulum Ca(2+) buffer capacity in smooth muscle cells.
    Dagnino-Acosta A; Guerrero-Hernández A
    Cell Calcium; 2009 Sep; 46(3):188-96. PubMed ID: 19679350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content.
    Guerrero-Hernández A; Sánchez-Vázquez VH; Martínez-Martínez E; Sandoval-Vázquez L; Perez-Rosas NC; Lopez-Farias R; Dagnino-Acosta A
    Adv Exp Med Biol; 2020; 1131():337-370. PubMed ID: 31646517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice.
    Tomasi M; Canato M; Paolini C; Dainese M; Reggiani C; Volpe P; Protasi F; Nori A
    Am J Physiol Cell Physiol; 2012 Feb; 302(3):C575-86. PubMed ID: 22049211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tripartite motif-containing protein 32 regulates Ca
    Choi JH; Jeong SY; Kim J; Woo JS; Lee EH
    Am J Physiol Cell Physiol; 2022 Dec; 323(6):C1860-C1871. PubMed ID: 36374170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endogenous and maximal sarcoplasmic reticulum calcium content and calsequestrin expression in type I and type II human skeletal muscle fibres.
    Lamboley CR; Murphy RM; McKenna MJ; Lamb GD
    J Physiol; 2013 Dec; 591(23):6053-68. PubMed ID: 24127619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased store-operated Ca2+ entry in skeletal muscle with reduced calsequestrin-1 expression.
    Zhao X; Min CK; Ko JK; Parness J; Kim DH; Weisleder N; Ma J
    Biophys J; 2010 Sep; 99(5):1556-64. PubMed ID: 20816068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres.
    Kurebayashi N; Ogawa Y
    J Physiol; 2001 May; 533(Pt 1):185-99. PubMed ID: 11351027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-rapid activation and deactivation of store-operated Ca(2+) entry in skeletal muscle.
    Edwards JN; Murphy RM; Cully TR; von Wegner F; Friedrich O; Launikonis BS
    Cell Calcium; 2010 May; 47(5):458-67. PubMed ID: 20434768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Store-operated Ca2+ entry in muscle physiology and diseases.
    Pan Z; Brotto M; Ma J
    BMB Rep; 2014 Feb; 47(2):69-79. PubMed ID: 24411466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1.
    García-Castañeda M; Vega AV; Rodríguez R; Montiel-Jaen MG; Cisneros B; Zarain-Herzberg A; Avila G
    J Physiol; 2017 Jul; 595(13):4167-4187. PubMed ID: 28303574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers.
    Barone V; Randazzo D; Del Re V; Sorrentino V; Rossi D
    J Muscle Res Cell Motil; 2015 Dec; 36(6):501-15. PubMed ID: 26374336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tubular aggregates are from whole sarcoplasmic reticulum origin: alterations in calcium binding protein expression in mouse skeletal muscle during aging.
    Chevessier F; Marty I; Paturneau-Jouas M; Hantaï D; Verdière-Sahuqué M
    Neuromuscul Disord; 2004 Mar; 14(3):208-16. PubMed ID: 15036331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.