BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36900023)

  • 1. Using CCA-Fused Cepstral Features in a Deep Learning-Based Cry Diagnostic System for Detecting an Ensemble of Pathologies in Newborns.
    Khalilzad Z; Tadj C
    Diagnostics (Basel); 2023 Feb; 13(5):. PubMed ID: 36900023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newborn Cry-Based Diagnostic System to Distinguish between Sepsis and Respiratory Distress Syndrome Using Combined Acoustic Features.
    Khalilzad Z; Hasasneh A; Tadj C
    Diagnostics (Basel); 2022 Nov; 12(11):. PubMed ID: 36428865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Entropy-Based Architecture for Detection of Sepsis in Newborn Cry Diagnostic Systems.
    Khalilzad Z; Kheddache Y; Tadj C
    Entropy (Basel); 2022 Aug; 24(9):. PubMed ID: 36141080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Based Cry Diagnostic System for Identifying Septic Newborns.
    Matikolaie FS; Tadj C
    J Voice; 2022 Feb; ():. PubMed ID: 35193790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infant Cry Signal Diagnostic System Using Deep Learning and Fused Features.
    Zayed Y; Hasasneh A; Tadj C
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37371002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cry-based infant pathology classification using GMMs.
    Farsaie Alaie H; Abou-Abbas L; Tadj C
    Speech Commun; 2016 Mar; 77():28-52. PubMed ID: 27524848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of respiratory sounds classification methods based on cepstral analysis and artificial neural networks.
    Semmad A; Bahoura M
    Comput Biol Med; 2024 Mar; 171():108190. PubMed ID: 38387384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Diseases in Newborns Using Advanced Acoustic Features of Cry Signals.
    Kheddache Y; Tadj C
    Biomed Signal Process Control; 2019; 50():35-44. PubMed ID: 33281921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification.
    Hariharan M; Sindhu R; Vijean V; Yazid H; Nadarajaw T; Yaacob S; Polat K
    Comput Methods Programs Biomed; 2018 Mar; 155():39-51. PubMed ID: 29512503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Two-Level Speaker Identification System via Fusion of Heterogeneous Classifiers and Complementary Feature Cooperation.
    Al-Qaderi M; Lahamer E; Rad A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of Premature Newborns' Spontaneous Cries in the Real Context of Neonatal Intensive Care Units.
    Cabon S; Met-Montot B; Porée F; Rosec O; Simon A; Carrault G
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automatic method using MFCC features for sleep stage classification.
    Pei W; Li Y; Wen P; Yang F; Ji X
    Brain Inform; 2024 Feb; 11(1):6. PubMed ID: 38340211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Assisted Neonatal Cry Classification
    K A; Vincent PMDR; Srinivasan K; Chang CY
    Front Public Health; 2021; 9():670352. PubMed ID: 34178926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning for Infant Cry Recognition.
    Liang YC; Wijaya I; Yang MT; Cuevas Juarez JR; Chang HT
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of infant cry through weighted linear prediction cepstral coefficients and Probabilistic Neural Network.
    Hariharan M; Chee LS; Yaacob S
    J Med Syst; 2012 Jun; 36(3):1309-15. PubMed ID: 20844933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binary particle swarm optimization for feature selection in detection of infants with hypothyroidism.
    Zabidi A; Khuan LY; Mansor W; Yassin IM; Sahak R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2772-5. PubMed ID: 22254916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of psychoacoustic spectrum warping, decision template fusion, and neighborhood component analysis in newborn cry diagnostic systems.
    Khalilzad Z; Tadj C
    J Acoust Soc Am; 2024 Feb; 155(2):901-914. PubMed ID: 38310608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Pattern Recognition Techniques to the Classification of Full-Term and Preterm Infant Cry.
    Orlandi S; Reyes Garcia CA; Bandini A; Donzelli G; Manfredi C
    J Voice; 2016 Nov; 30(6):656-663. PubMed ID: 26474712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On effective cognitive state classification using novel feature extraction strategies.
    Hazra S; Pratap AA; Agrawal O; Nandy A
    Cogn Neurodyn; 2021 Dec; 15(6):1125-1155. PubMed ID: 34790272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance frequencies behavior in pathologic cries of newborns.
    Kheddache Y; Tadj C
    J Voice; 2015 Jan; 29(1):1-12. PubMed ID: 25175781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.