BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36900427)

  • 1. Organic Acid Accumulation and Associated Dynamic Changes in Enzyme Activity and Gene Expression during Fruit Development and Ripening of Common Loquat and Its Interspecific Hybrid.
    Deng H; Li X; Wang Y; Ma Q; Zeng Y; Xiang Y; Chen M; Zhang H; Xia H; Liang D; Lv X; Wang J; Deng Q
    Foods; 2023 Feb; 12(5):. PubMed ID: 36900427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar and acid profile of loquat (
    Ali MM; Anwar R; Rehman RNU; Ejaz S; Ali S; Yousef AF; Ercisli S; Hu X; Hou Y; Chen F
    Front Plant Sci; 2022; 13():1039360. PubMed ID: 36340346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Changes in Cell Wall Polysaccharides during Fruit Development and Ripening of Two Contrasting Loquat Cultivars and Associated Molecular Mechanisms.
    Deng H; Wang X; Wang Y; Xiang Y; Chen M; Zhang H; Luo X; Xia H; Liang D; Lv X; Wang J; Deng Q
    Foods; 2023 Jan; 12(2):. PubMed ID: 36673402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat.
    Yang J; Zhang J; Niu XQ; Zheng XL; Chen X; Zheng GH; Wu JC
    PLoS One; 2021; 16(4):e0238873. PubMed ID: 33914776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome and biochemical analyses reveal phenolic compounds-mediated flavor differences in loquat (
    Zhang K; Ma Q; Wang Y; Yuan Z; Yang Z; Luo X; Zhang H; Xia H; Lv X; Wang Y; Deng Q
    Food Chem X; 2024 Mar; 21():101145. PubMed ID: 38312488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenously applied zinc improves sugar-acid profile of loquat (Eriobotrya japonica Lindl.) by regulating enzymatic activities and expression of their metabolism-related genes.
    Ali MM; Gull S; Hu X; Hou Y; Chen F
    Plant Physiol Biochem; 2023 Aug; 201():107829. PubMed ID: 37329690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Changes of Phenolic Composition, Antioxidant Capacity, and Gene Expression in 'Snow White' Loquat (
    Zhang K; Zhou J; Song P; Li X; Peng X; Huang Y; Ma Q; Liang D; Deng Q
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome assembly of wild loquat (
    Jing D; Liu X; He Q; Dang J; Hu R; Xia Y; Wu D; Wang S; Zhang Y; Xia Q; Zhang C; Yu Y; Guo Q; Liang G
    Hortic Res; 2023 Feb; 10(2):uhac265. PubMed ID: 36778182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Dynamics During Loquat Fruit Ripening and Postharvest Technologies.
    Cai J; Chen T; Zhang Z; Li B; Qin G; Tian S
    Front Plant Sci; 2019; 10():619. PubMed ID: 31178876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of phenolic compounds during loquat fruit development.
    Ding CK; Chachin K; Ueda Y; Imahori Y; Wang CY
    J Agric Food Chem; 2001 Jun; 49(6):2883-8. PubMed ID: 11409982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-omics analysis provides new insights into the changes of important nutrients and fructose metabolism in loquat bud sport mutant.
    Song HY; Zhao K; Pei YG; Chen HX; Wang XA; Jiang GL; Xie HJ; Chen D; Gong RG
    Front Plant Sci; 2024; 15():1374925. PubMed ID: 38606078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Analysis of
    Peng Z; Li W; Gan X; Zhao C; Paudel D; Su W; Lv J; Lin S; Liu Z; Yang X
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using artificial neural network in predicting the key fruit quality of loquat.
    Huang X; Wang H; Qu S; Luo W; Gao Z
    Food Sci Nutr; 2021 Mar; 9(3):1780-1791. PubMed ID: 33747488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature conditioning alleviates chilling injury in loquat fruit and regulates glycine betaine content and energy status.
    Jin P; Zhang Y; Shan T; Huang Y; Xu J; Zheng Y
    J Agric Food Chem; 2015 Apr; 63(14):3654-9. PubMed ID: 25822129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene biosynthesis and perception during ripening of loquat fruit (Eriobotrya japonica Lindl.).
    Alos E; Martinez-Fuentes A; Reig C; Mesejo C; Rodrigo MJ; Agustí M; Zacarías L
    J Plant Physiol; 2017 Mar; 210():64-71. PubMed ID: 28088087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic acid and sugar components accumulation and flavor associated metabolites dynamic changes in yellow- and white-fleshed seedless loquats (
    Liu X; Song L; Xue B; Chi Z; Wang Y; Wen S; Lv W; Hu Q; Guo Q; Wang S; Wu D; Liang G; Jing D
    Food Chem X; 2024 Mar; 21():101046. PubMed ID: 38173902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process.
    Song H; Zhao X; Hu W; Wang X; Shen T; Yang L
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene signal transduction elements involved in chilling injury in non-climacteric loquat fruit.
    Wang P; Zhang B; Li X; Xu C; Yin X; Shan L; Ferguson I; Chen K
    J Exp Bot; 2010; 61(1):179-90. PubMed ID: 19884229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development.
    Hadjipieri M; Georgiadou EC; Marin A; Diaz-Mula HM; Goulas V; Fotopoulos V; Tomás-Barberán FA; Manganaris GA
    BMC Plant Biol; 2017 Jun; 17(1):102. PubMed ID: 28615062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a Chromoplast-Specific Lycopene β-Cyclase Gene (
    Hong M; Chi ZH; Wang YQ; Tang YM; Deng QX; He MY; Wang RK; He YZ
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31847172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.