These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36901335)

  • 41. Exploring how fire spread mode shapes the composition of pyrogenic carbon from burning forest litter fuels in a combustion wind tunnel.
    Surawski NC; Macdonald LM; Baldock JA; Sullivan AL; Roxburgh SH; Polglase PJ
    Sci Total Environ; 2020 Jan; 698():134306. PubMed ID: 31783449
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring the brachistochrone (shortest-time) path in fire spread.
    Sun P; Liu Y; Huang X
    Sci Rep; 2022 Aug; 12(1):13600. PubMed ID: 35948595
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk.
    Baeza MJ; De Luís M; Raventós J; Escarré A
    J Environ Manage; 2002 Jun; 65(2):199-208. PubMed ID: 12197080
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Buoyancy effects on concurrent flame spread over thick PMMA.
    Thomsen M; Fernandez-Pello C; Ruff GA; Urban DL
    Combust Flame; 2019 Jan; 199():279-291. PubMed ID: 35197652
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds.
    Suzuki S; Manzello SL
    Fire Technol; 2020; 57(2):. PubMed ID: 34092802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experiments on the influence of spot fire and topography interaction on fire rate of spread.
    Storey MA; Price OF; Almeida M; Ribeiro C; Bradstock RA; Sharples JJ
    PLoS One; 2021; 16(1):e0245132. PubMed ID: 33411769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain.
    Piqué M; Domènech R
    Sci Total Environ; 2018 Mar; 618():1539-1546. PubMed ID: 29111258
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Fire behavior of Mongolian oak leaves fuel bed under no-wind and zero-slope conditions. II. Analysis of the factors affecting flame length and residence time and related prediction models].
    Zhang JL; Liu BF; Di XY; Chu TF; Jin S
    Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):3149-56. PubMed ID: 23431803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A model for assessing ignition, flame spread, and burn hazard potential of a multilayered jacket.
    Ezekoye OA; Diller KR
    J Burn Care Res; 2006; 27(4):487-95. PubMed ID: 16819353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.
    Brando PM; Oliveria-Santos C; Rocha W; Cury R; Coe MT
    Glob Chang Biol; 2016 Jul; 22(7):2516-25. PubMed ID: 26750627
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LNG fires: a review of experimental results, models and hazard prediction challenges.
    Raj PK
    J Hazard Mater; 2007 Feb; 140(3):444-64. PubMed ID: 17156916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough.
    Xie Q; Zhang H; Ye R
    J Hazard Mater; 2009 Jul; 166(2-3):1321-5. PubMed ID: 19167159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires.
    Prichard SJ; Povak NA; Kennedy MC; Peterson DW
    Ecol Appl; 2020 Jul; 30(5):e02104. PubMed ID: 32086976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fire hazard of titanium powder layers mixed with inert nano TiO
    Yuan C; Cai J; Amyotte P; Li C; Bu Y; Liu K; Li G
    J Hazard Mater; 2018 Mar; 346():19-26. PubMed ID: 29232613
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.
    Lecina-Diaz J; Alvarez A; Retana J
    PLoS One; 2014; 9(1):e85127. PubMed ID: 24465492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Weather and Fuel as Modulators of Grassland Fire Behavior in the Northern Great Plains.
    McGranahan DA; Zopfi ME; Yurkonis KA
    Environ Manage; 2023 May; 71(5):940-949. PubMed ID: 36525066
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Overlap Length on Flammability and Fire Hazard of Vertical Polymethyl Methacrylate (PMMA) Plate Array.
    An W; Hu K; Wang T; Peng L; Li S; Hu X
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33261199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning.
    Vilén T; Fernandes PM
    Environ Manage; 2011 Sep; 48(3):558-67. PubMed ID: 21604164
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental Research on the Combustion Characteristics of Transformer Oil Jet Fires in Oil-Filled Equipment under Heat.
    Sun R; Wang J; Yang X; Chen P
    ACS Omega; 2021 Nov; 6(47):31843-31853. PubMed ID: 34870007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA.
    Dickinson MB; Hutchinson TF; Dietenberger M; Matt F; Peters MP
    PLoS One; 2016; 11(8):e0159997. PubMed ID: 27536964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.