These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36901376)

  • 21. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry.
    Wang S; Yu J
    Waste Manag Res; 2021 Jun; 39(6):818-827. PubMed ID: 32883186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China.
    Yang H; Hu X; Zhang G; Dou B; Cui G; Yang Q; Yan X
    Waste Manag; 2024 Apr; 178():168-175. PubMed ID: 38401430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review.
    Wei Q; Wu Y; Li S; Chen R; Ding J; Zhang C
    Sci Total Environ; 2023 Mar; 866():161380. PubMed ID: 36610625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blockchain technology embedded in the power battery for echelon recycling selection under the mechanism of traceability.
    Xing Q; Ran L; Li Y; Zhou B
    Sci Rep; 2024 Jul; 14(1):15069. PubMed ID: 38956265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review on the recycling of spent lithium iron phosphate batteries.
    Zhao T; Li W; Traversy M; Choi Y; Ghahreman A; Zhao Z; Zhang C; Zhao W; Song Y
    J Environ Manage; 2024 Feb; 351():119670. PubMed ID: 38039588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative evaluation for recycling waste power batteries with different collection modes based on Stackelberg game.
    Sun Q; Chen H; Long R; Li Q; Huang H
    J Environ Manage; 2022 Jun; 312():114892. PubMed ID: 35305356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments.
    Mossali E; Picone N; Gentilini L; Rodrìguez O; Pérez JM; Colledani M
    J Environ Manage; 2020 Jun; 264():110500. PubMed ID: 32250918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and simulation of a secondary resource recycling system: A case study of lead-acid batteries.
    Tian X; Xiao H; Liu Y; Ding W
    Waste Manag; 2021 May; 126():78-88. PubMed ID: 33744559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recycling and management of waste lead-acid batteries: A mini-review.
    Li M; Liu J; Han W
    Waste Manag Res; 2016 Apr; 34(4):298-306. PubMed ID: 26941209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-objective combinatorial optimization analysis of the recycling of retired new energy electric vehicle power batteries in a sustainable dynamic reverse logistics network.
    Mu N; Wang Y; Chen ZS; Xin P; Deveci M; Pedrycz W
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47580-47601. PubMed ID: 36745350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability.
    Martins LS; Guimarães LF; Botelho Junior AB; Tenório JAS; Espinosa DCR
    J Environ Manage; 2021 Oct; 295():113091. PubMed ID: 34171777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the impact of nickel recycling from batteries on nickel demand during vehicle electrification in China from 2010 to 2050.
    Zhang H; Liu G; Li J; Qiao D; Zhang S; Li T; Guo X; Liu M
    Sci Total Environ; 2023 Feb; 859(Pt 1):159964. PubMed ID: 36372177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects.
    Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F
    Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous fleet recyclables collection routing optimization in a two-echelon collaborative reverse logistics network from circular economic and environmental perspective.
    Cao S; Liao W; Huang Y
    Sci Total Environ; 2021 Mar; 758():144062. PubMed ID: 33333310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Economic and environmental characterization of an evolving Li-ion battery waste stream.
    Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ
    J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of end-of-life electric vehicle batteries in China: Future scenarios and economic benefits.
    Jiang S; Zhang L; Hua H; Liu X; Wu H; Yuan Z
    Waste Manag; 2021 Nov; 135():70-78. PubMed ID: 34478950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward sustainable and systematic recycling of spent rechargeable batteries.
    Zhang X; Li L; Fan E; Xue Q; Bian Y; Wu F; Chen R
    Chem Soc Rev; 2018 Oct; 47(19):7239-7302. PubMed ID: 30124695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The lead-acid battery industry in China: outlook for production and recycling.
    Tian X; Wu Y; Gong Y; Zuo T
    Waste Manag Res; 2015 Nov; 33(11):986-94. PubMed ID: 26341636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collaborative reverse logistics network for electric vehicle batteries management from sustainable perspective.
    Wenzhu Liao GH; Luo X
    J Environ Manage; 2022 Dec; 324():116352. PubMed ID: 36208516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.