BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36901663)

  • 1. The Effect of a Knee Brace on Muscle Forces during Single-Leg Landings at Two Heights.
    Wang Y; Liu H; Wei H; Wu C; Yuan F
    Int J Environ Res Public Health; 2023 Mar; 20(5):. PubMed ID: 36901663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.
    Podraza JT; White SC
    Knee; 2010 Aug; 17(4):291-5. PubMed ID: 20303276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk.
    Morgan KD; Donnelly CJ; Reinbolt JA
    J Biomech; 2014 Oct; 47(13):3295-302. PubMed ID: 25218505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sagittal plane body kinematics and kinetics during single-leg landing from increasing vertical heights and horizontal distances: implications for risk of non-contact ACL injury.
    Ali N; Robertson DG; Rouhi G
    Knee; 2014 Jan; 21(1):38-46. PubMed ID: 23274067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Whole Body Parameters on Knee Joint Biomechanics: Implications for ACL Injury Prevention During Single-Leg Landings.
    Sadeqi S; Norte GE; Murray A; Erbulut DU; Goel VK
    Am J Sports Med; 2023 Jul; 51(8):2098-2109. PubMed ID: 37259968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.
    Mahaki M; Mi'mar R; Mahaki B
    J Sports Med Phys Fitness; 2015 Oct; 55(10):1145-9. PubMed ID: 25924564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.
    Ewing KA; Fernandez JW; Begg RK; Galea MP; Lee PVS
    J Biomech; 2016 Oct; 49(14):3347-3354. PubMed ID: 27592299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Prophylactic Knee Bracing on Lower Limb Kinematics, Kinetics, and Energetics During Double-Leg Drop Landing at 2 Heights.
    Ewing KA; Begg RK; Galea MP; Lee PV
    Am J Sports Med; 2016 Jul; 44(7):1753-61. PubMed ID: 27159284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of leg dominance and landing height on ACL loading among female athletes.
    Mokhtarzadeh H; Ewing K; Janssen I; Yeow CH; Brown N; Lee PVS
    J Biomech; 2017 Jul; 60():181-187. PubMed ID: 28712544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of knee brace on coordination and neuronal leg muscle control: an early postoperative functional study in anterior cruciate ligament reconstructed patients.
    Rebel M; Paessler HH
    Knee Surg Sports Traumatol Arthrosc; 2001 Sep; 9(5):272-81. PubMed ID: 11685358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury.
    Shimokochi Y; Ambegaonkar JP; Meyer EG; Lee SY; Shultz SJ
    Knee Surg Sports Traumatol Arthrosc; 2013 Apr; 21(4):888-97. PubMed ID: 22543471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings.
    Ali N; Andersen MS; Rasmussen J; Robertson DG; Rouhi G
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1602-16. PubMed ID: 23387967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle contributions to tibiofemoral shear forces and valgus and rotational joint moments during single leg drop landing.
    Maniar N; Schache AG; Pizzolato C; Opar DA
    Scand J Med Sci Sports; 2020 Sep; 30(9):1664-1674. PubMed ID: 32416625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower extremity muscle contributions to ACL loading during a stop-jump task.
    Peel SA; Schroeder LE; Weinhandl JT
    J Biomech; 2021 May; 121():110426. PubMed ID: 33873112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Joint and Whole-Body Movement Changes in Anterior Cruciate Ligament Athletes Returning to Sport.
    Smeets A; Verheul J; Vanrenterghem J; Staes F; Vandenneucker H; Claes S; Verschueren S
    Med Sci Sports Exerc; 2020 Aug; 52(8):1658-1667. PubMed ID: 32079913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretch reflex changes in ACL-deficient individuals and healthy controls during normal and surprise landings.
    Konishi Y; McNair PJ; Rice DA; Ochiai S; Hagino T
    Scand J Med Sci Sports; 2020 Dec; 30(12):2342-2351. PubMed ID: 32854151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.
    Ameer MA; Muaidi QI
    Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonist muscle co-contraction during a double-leg landing maneuver at two heights.
    Mokhtarzadeh H; Yeow CH; Goh JCH; Oetomo D; Ewing K; Lee PVS
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1382-1393. PubMed ID: 28836455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of single-leg landing technique on ACL loading.
    Laughlin WA; Weinhandl JT; Kernozek TW; Cobb SC; Keenan KG; O'Connor KM
    J Biomech; 2011 Jul; 44(10):1845-51. PubMed ID: 21561623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.