These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 36901809)
1. Transcriptional Regulatory Network of Plant Cadmium Stress Response. Li Y; Ding L; Zhou M; Chen Z; Ding Y; Zhu C Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901809 [TBL] [Abstract][Full Text] [Related]
2. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Mendoza-Cózatl DG; Jobe TO; Hauser F; Schroeder JI Curr Opin Plant Biol; 2011 Oct; 14(5):554-62. PubMed ID: 21820943 [TBL] [Abstract][Full Text] [Related]
3. Metal transport proteins and transcription factor networks in plant responses to cadmium stress. Liu C; Wen L; Cui Y; Ahammed GJ; Cheng Y Plant Cell Rep; 2024 Aug; 43(9):218. PubMed ID: 39153039 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional Regulatory Network of Plant Heat Stress Response. Ohama N; Sato H; Shinozaki K; Yamaguchi-Shinozaki K Trends Plant Sci; 2017 Jan; 22(1):53-65. PubMed ID: 27666516 [TBL] [Abstract][Full Text] [Related]
5. [Mechanisms of heavy metal cadmium tolerance in plants]. Zhang J; Shu WS Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):1-8. PubMed ID: 16477124 [TBL] [Abstract][Full Text] [Related]
6. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
7. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
8. Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis. Zhang L; Ding H; Jiang H; Wang H; Chen K; Duan J; Feng S; Wu G Chemosphere; 2020 Mar; 242():125168. PubMed ID: 31678850 [TBL] [Abstract][Full Text] [Related]
9. From stress to resilience: Unraveling the molecular mechanisms of cadmium toxicity, detoxification and tolerance in plants. Noor I; Sohail H; Akhtar MT; Cui J; Lu Z; Mostafa S; Hasanuzzaman M; Hussain S; Guo N; Jin B Sci Total Environ; 2024 Dec; 954():176462. PubMed ID: 39332719 [TBL] [Abstract][Full Text] [Related]
10. The Liu X; Wang H; He F; Du X; Ren M; Bao Y Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142291 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification and transcriptome analysis of the heavy metal-associated (HMA) gene family in Tartary buckwheat and their regulatory roles under cadmium stress. Ye X; Liu C; Yan H; Wan Y; Wu Q; Wu X; Zhao G; Zou L; Xiang D Gene; 2022 Dec; 847():146884. PubMed ID: 36103913 [TBL] [Abstract][Full Text] [Related]
12. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. Xu L; Zhang F; Tang M; Wang Y; Dong J; Ying J; Chen Y; Hu B; Li C; Liu L J Pineal Res; 2020 Aug; 69(1):e12659. PubMed ID: 32323337 [TBL] [Abstract][Full Text] [Related]
13. Activation of a gene network in durum wheat roots exposed to cadmium. Aprile A; Sabella E; Vergine M; Genga A; Siciliano M; Nutricati E; Rampino P; De Pascali M; Luvisi A; Miceli A; Negro C; De Bellis L BMC Plant Biol; 2018 Oct; 18(1):238. PubMed ID: 30326849 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. Leng Y; Li Y; Wen Y; Zhao H; Wang Q; Li SW Ecotoxicol Environ Saf; 2020 Nov; 204():111098. PubMed ID: 32798749 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcriptomics analysis reveals differential Cd response processes in roots of two turnip landraces with different Cd accumulation capacities. Li X; Chen D; Yang Y; Liu Y; Luo L; Chen Q; Yang Y Ecotoxicol Environ Saf; 2021 Sep; 220():112392. PubMed ID: 34102395 [TBL] [Abstract][Full Text] [Related]
16. Integrated transcriptome and metabolome analysis reveals the mechanism of tolerance to manganese and cadmium toxicity in the Mn/Cd hyperaccumulator Celosia argentea Linn. Yu G; Ullah H; Wang X; Liu J; Chen B; Jiang P; Lin H; Sunahara GI; You S; Zhang X; Shahab A J Hazard Mater; 2023 Feb; 443(Pt A):130206. PubMed ID: 36279652 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. Oono Y; Yazawa T; Kawahara Y; Kanamori H; Kobayashi F; Sasaki H; Mori S; Wu J; Handa H; Itoh T; Matsumoto T PLoS One; 2014; 9(5):e96946. PubMed ID: 24816929 [TBL] [Abstract][Full Text] [Related]
18. Transcription Factors PvERF15 and PvMTF-1 Form a Cadmium Stress Transcriptional Pathway. Lin T; Yang W; Lu W; Wang Y; Qi X Plant Physiol; 2017 Mar; 173(3):1565-1573. PubMed ID: 28073984 [TBL] [Abstract][Full Text] [Related]
19. Effects of cadmium stress on the morphology, physiology, cellular ultrastructure, and Liu D; Gao Z; Li J; Yao Q; Tan W; Xing W; Lu Z Int J Phytoremediation; 2023; 25(4):455-465. PubMed ID: 35771710 [TBL] [Abstract][Full Text] [Related]
20. Comparison of two willow genotypes reveals potential roles of iron-regulated transporter 9 and heavy-metal ATPase 1 in cadmium accumulation and resistance in Salix suchowensis. Guo N; Fan L; Cao Y; Ling H; Xu G; Zhou J; Chen Q; Tao J Ecotoxicol Environ Saf; 2022 Oct; 244():114065. PubMed ID: 36108434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]