These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36901911)
21. Whole transcriptome sequencing of Pseudomonas syringae pv. actinidiae-infected kiwifruit plants reveals species-specific interaction between long non-coding RNA and coding genes. Wang Z; Liu Y; Li L; Li D; Zhang Q; Guo Y; Wang S; Zhong C; Huang H Sci Rep; 2017 Jul; 7(1):4910. PubMed ID: 28687784 [TBL] [Abstract][Full Text] [Related]
22. Genome-wide identification and characterization of the TIFY gene family in kiwifruit. Tao J; Jia H; Wu M; Zhong W; Jia D; Wang Z; Huang C BMC Genomics; 2022 Mar; 23(1):179. PubMed ID: 35247966 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive Analysis of Metabolome and Transcriptome in Fruits and Roots of Kiwifruit. Zhang L; Tang Z; Zheng H; Zhong C; Zhang Q Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674815 [TBL] [Abstract][Full Text] [Related]
24. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. Wu R; Wang T; McGie T; Voogd C; Allan AC; Hellens RP; Varkonyi-Gasic E J Exp Bot; 2014 Sep; 65(17):4985-95. PubMed ID: 24948678 [TBL] [Abstract][Full Text] [Related]
25. Genome-Wide Identification and Structural Characterization of Growth-Regulating Factors (GRFs) in Abid M; Wang Z; Feng C; Luo J; Zhang Y; Tu J; Cai X; Gao P Plants (Basel); 2022 Jun; 11(13):. PubMed ID: 35807582 [TBL] [Abstract][Full Text] [Related]
26. Transcriptome co-expression network analysis identifies key genes and regulators of ripening kiwifruit ester biosynthesis. Zhang A; Zhang Q; Li J; Gong H; Fan X; Yang Y; Liu X; Yin X BMC Plant Biol; 2020 Mar; 20(1):103. PubMed ID: 32138665 [TBL] [Abstract][Full Text] [Related]
27. Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. Marks MD; Wenger JP; Gilding E; Jilk R; Dixon RA Mol Plant; 2009 Jul; 2(4):803-822. PubMed ID: 19626137 [TBL] [Abstract][Full Text] [Related]
28. Transcriptomic and functional analysis provides molecular insights into multicellular trichome development. Dong M; Xue S; Bartholomew ES; Zhai X; Sun L; Xu S; Zhang Y; Yin S; Ma W; Chen S; Feng Z; Geng C; Li X; Liu X; Ren H Plant Physiol; 2022 May; 189(1):301-314. PubMed ID: 35171294 [TBL] [Abstract][Full Text] [Related]
29. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). Shu P; Zhang Z; Wu Y; Chen Y; Li K; Deng H; Zhang J; Zhang X; Wang J; Liu Z; Xie Y; Du K; Li M; Bouzayen M; Hong Y; Zhang Y; Liu M New Phytol; 2023 Jun; 238(5):2064-2079. PubMed ID: 36843264 [TBL] [Abstract][Full Text] [Related]
30. Involvement of ABA Responsive Hussain S; Zhang N; Wang W; Ahmed S; Cheng Y; Chen S; Wang X; Wang Y; Hu X; Wang T; Wang S Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202673 [TBL] [Abstract][Full Text] [Related]
31. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). Liu Y; Qi Y; Zhang A; Wu H; Liu Z; Ren X Plant Mol Biol; 2019 Jul; 100(4-5):451-465. PubMed ID: 31079310 [TBL] [Abstract][Full Text] [Related]
32. Genome-Wide Identification of Kiwifruit Luo J; Abid M; Zhang Y; Cai X; Tu J; Gao P; Wang Z; Huang H Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768313 [TBL] [Abstract][Full Text] [Related]
33. Three metabolic pathways are responsible for the accumulation and maintenance of high AsA content in kiwifruit (Actinidia eriantha). Liao G; Chen L; He Y; Li X; Lv Z; Yi S; Zhong M; Huang C; Jia D; Qu X; Xu X BMC Genomics; 2021 Jan; 22(1):13. PubMed ID: 33407094 [TBL] [Abstract][Full Text] [Related]
34. Kiwifruit R2R3-MYB transcription factors and contribution of the novel AcMYB75 to red kiwifruit anthocyanin biosynthesis. Li W; Ding Z; Ruan M; Yu X; Peng M; Liu Y Sci Rep; 2017 Dec; 7(1):16861. PubMed ID: 29203778 [TBL] [Abstract][Full Text] [Related]
35. A key structural gene, AaLDOX, is involved in anthocyanin biosynthesis in all red-fleshed kiwifruit (Actinidia arguta) based on transcriptome analysis. Li Y; Fang J; Qi X; Lin M; Zhong Y; Sun L Gene; 2018 Mar; 648():31-41. PubMed ID: 29309888 [TBL] [Abstract][Full Text] [Related]
36. COP9 signalosome subunit 5A affects phenylpropanoid metabolism, trichome formation and transcription of key genes of a regulatory tri-protein complex in Arabidopsis. Wei S; Li X; Gruber MY; Feyissa BA; Amyot L; Hannoufa A BMC Plant Biol; 2018 Jun; 18(1):134. PubMed ID: 29940863 [TBL] [Abstract][Full Text] [Related]
37. Nutritional component analyses of kiwifruit in different development stages by metabolomic and transcriptomic approaches. Xiong Y; Yan P; Du K; Li M; Xie Y; Gao P J Sci Food Agric; 2020 Apr; 100(6):2399-2409. PubMed ID: 31917468 [TBL] [Abstract][Full Text] [Related]
38. Full-length transcriptome profiling reveals insight into the cold response of two kiwifruit genotypes (A. arguta) with contrasting freezing tolerances. Sun S; Lin M; Qi X; Chen J; Gu H; Zhong Y; Sun L; Muhammad A; Bai D; Hu C; Fang J BMC Plant Biol; 2021 Aug; 21(1):365. PubMed ID: 34380415 [TBL] [Abstract][Full Text] [Related]
39. GCN5 modulates trichome initiation in Arabidopsis by manipulating histone acetylation of core trichome initiation regulator genes. Wang T; Jia Q; Wang W; Hussain S; Ahmed S; Adnan ; Zhou DX; Ni Z; Wang S Plant Cell Rep; 2019 Jun; 38(6):755-765. PubMed ID: 30927071 [TBL] [Abstract][Full Text] [Related]
40. Specific detection of potentially allergenic kiwifruit in foods using polymerase chain reaction. Taguchi H; Watanabe S; Hirao T; Akiyama H; Sakai S; Watanabe T; Matsuda R; Urisu A; Maitani T J Agric Food Chem; 2007 Mar; 55(5):1649-55. PubMed ID: 17288438 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]