These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36902089)

  • 1. Fabrication of Polyurethane Elastomer/Hindered Phenol Composites with Tunable Damping Property.
    Zhao X; Jin R; Niu Z; Gao Y; Hu S
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-Based Polyurethane and Its Composites towards High Damping Properties.
    Hu S; Wu Y; Fu G; Shou T; Zhai M; Yin D; Zhao X
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Shape-Memory Effect of Hindered Phenol (AO-80)/Acrylic Rubber (ACM) Composites with Tunable Transition Temperature.
    Hu SK; Chen S; Zhao XY; Guo MM; Zhang LQ
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30518134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable Design and Preparation of Hydroxyl-Terminated Solution-Polymerized Styrene Butadiene for Polyurethane Elastomers with High-Damping Properties.
    Zhao Y; Shou T; Fu S; Qin X; Hu S; Zhao X; Zhang L
    Macromol Rapid Commun; 2022 Mar; 43(6):e2100692. PubMed ID: 35014119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a Stable and High-Performance Hindered Phenol/Polymer-Based Damping Material Through Structure Optimization and Damping Mechanism Revelation.
    Xu K; Hu Q; Wang J; Zhou H; Chen J
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31096550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering.
    Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H
    Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface Optimizing Core-Shell PZT@Carbon/Polyurethane Composites with Enhanced Passive Piezoelectric Vibration Damping Performance.
    Chen W; Lu X; Zheng Q; Hu D; Chen Y; Yu Q; Fan Q; Li H; Liu H
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7742-7753. PubMed ID: 38308589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Properties Analysis of Chlorinated Butyl Rubber (CIIR)/Organic Diatomite Damping Composites.
    Sheng Z; Yang S; Wang J; Lu Y; Tang K; Song S
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30400184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and Characterization of Isosorbide-Based Self-Healable Polyurethane Elastomers with Thermally Reversible Bonds.
    Kim HN; Lee DW; Ryu H; Song GS; Lee DS
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30889870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Based, Recyclable and Self-Healing Polyurethane Composites with High Energy Dissipation and Shape Memory.
    Shou T; Zhai M; Wu Y; Wu S; Hu S; Zhao X; Zhang L
    Macromol Rapid Commun; 2022 Nov; 43(21):e2200486. PubMed ID: 35947533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Hindered Phenol Crystallization on Properties of Organic Hybrid Damping Materials.
    Zhang L; Chen D; Fan X; Cai Z; Zhu M
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of biocompatibility and mechanical behavior of polyurethane elastomers based on chitin/1,4-butane diol blends.
    Zia KM; Zuber M; Bhatti IA; Barikani M; Sheikh MA
    Int J Biol Macromol; 2009 Jan; 44(1):18-22. PubMed ID: 18930759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing a Polymer-Based Hybrid with Simultaneously Improved Mechanical and Damping Properties via a Multilayer Structure Construction: Structure Evolution and a Damping Mechanism.
    Xu K; Hu Q; Wu H; Guo S; Zhang F
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32074954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.
    Kim HJ; Kang MS; Knowles JC; Gong MS
    J Biomater Appl; 2014 Sep; 29(3):454-64. PubMed ID: 24812276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and properties of shape memory polyurethanes generated from schiff-base chain extender containing benzoyl and pyridyl rings.
    Weng NC; Wu CF; Tsen WC; Wu CL; Suen MC
    Des Monomers Polym; 2018; 21(1):55-63. PubMed ID: 29706848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface characteristics of chitin-based shape memory polyurethane elastomers.
    Zia KM; Zuber M; Barikani M; Bhatti IA; Khan MB
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):248-52. PubMed ID: 19427176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of porous polyurethane/strontium-substituted hydroxyapatite composites for bone regeneration.
    Sariibrahimoglu K; Yang W; Leeuwenburgh SC; Yang F; Wolke JG; Zuo Y; Li Y; Jansen JA
    J Biomed Mater Res A; 2015 Jun; 103(6):1930-9. PubMed ID: 25203691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Performance of Silicone Rubber Composites Modified by Polyurethane.
    Gao L; Li Y; Fu W; Zhou L; Fang S
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of polyurethane as an elastomer in thermoplastic microfluidic devices and the study of its creep properties.
    Gu P; Nishida T; Fan ZH
    Electrophoresis; 2014 Feb; 35(2-3):289-97. PubMed ID: 23868507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer.
    Li Y; Shimizu H
    Macromol Biosci; 2007 Jul; 7(7):921-8. PubMed ID: 17578835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.