BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36902130)

  • 1. The Intrinsic Radius as a Key Parameter in the Generalized Born Model to Adjust Protein-Protein Electrostatic Interaction.
    Parkin D; Takano M
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC
    J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Over-Destabilization of Protein-Protein Interaction in Generalized Born Model and Utility of Energy Density Integration Cutoff.
    Mizuhara Y; Parkin D; Umezawa K; Ohnuki J; Takano M
    J Phys Chem B; 2017 May; 121(18):4669-4677. PubMed ID: 28426223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and test of highly accurate endpoint free energy methods. 1: Evaluation of ABCG2 charge model on solvation free energy prediction and optimization of atom radii suitable for more accurate solvation free energy prediction by the PBSA method.
    Sun Y; He X; Hou T; Cai L; Man VH; Wang J
    J Comput Chem; 2023 May; 44(14):1334-1346. PubMed ID: 36807356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An n log n Generalized Born Approximation.
    Anandakrishnan R; Daga M; Onufriev AV
    J Chem Theory Comput; 2011 Mar; 7(3):544-59. PubMed ID: 26596289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized born model with a simple smoothing function.
    Im W; Lee MS; Brooks CL
    J Comput Chem; 2003 Nov; 24(14):1691-702. PubMed ID: 12964188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Born radii in the generalized Born approximation: the importance of being perfect.
    Onufriev A; Case DA; Bashford D
    J Comput Chem; 2002 Nov; 23(14):1297-304. PubMed ID: 12214312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic solvation energy for two oppositely charged ions in a solvated protein system: salt bridges can stabilize proteins.
    Gong H; Freed KF
    Biophys J; 2010 Feb; 98(3):470-7. PubMed ID: 20141761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treecode-based generalized Born method.
    Xu Z; Cheng X; Yang H
    J Chem Phys; 2011 Feb; 134(6):064107. PubMed ID: 21322661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bluues: a program for the analysis of the electrostatic properties of proteins based on generalized Born radii.
    Fogolari F; Corazza A; Yarra V; Jalaru A; Viglino P; Esposito G
    BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S18. PubMed ID: 22536964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale generalized born modeling of ligand binding energies for virtual database screening.
    Liu HY; Grinter SZ; Zou X
    J Phys Chem B; 2009 Sep; 113(35):11793-9. PubMed ID: 19678651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between Born solvation, dielectric exclusion, and Coulomb attraction in spherical nanopores.
    Hennequin T; Manghi M; Palmeri J
    Phys Rev E; 2021 Oct; 104(4-1):044601. PubMed ID: 34781526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric relaxation of cytochrome c oxidase: Comparison of the microscopic and continuum models.
    Leontyev IV; Stuchebrukhov AA
    J Chem Phys; 2009 Feb; 130(8):085103. PubMed ID: 19256628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic strength independence of charge distributions in solvation of biomolecules.
    Virtanen JJ; Sosnick TR; Freed KF
    J Chem Phys; 2014 Dec; 141(22):22D503. PubMed ID: 25494774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and applications of the generalized Born solvation model in macromolecular simulations.
    Tsui V; Case DA
    Biopolymers; 2000-2001; 56(4):275-91. PubMed ID: 11754341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Radius and Charge Parameter Uncertainty in Biomolecular Solvation Energy Calculations.
    Yang X; Lei H; Gao P; Thomas DG; Mobley DL; Baker NA
    J Chem Theory Comput; 2018 Feb; 14(2):759-767. PubMed ID: 29293342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.