BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 36902326)

  • 21. A functional three-dimensional microphysiological human model of myeloma bone disease.
    Visconti RJ; Kolaja K; Cottrell JA
    J Bone Miner Res; 2021 Oct; 36(10):1914-1930. PubMed ID: 34173283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wnt and BMP signaling pathways co-operatively induce the differentiation of multiple myeloma mesenchymal stem cells into osteoblasts by upregulating EMX2.
    Wei XF; Chen QL; Fu Y; Zhang QK
    J Cell Biochem; 2019 Apr; 120(4):6515-6527. PubMed ID: 30450775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Runx2 Deficiency in Osteoblasts Promotes Myeloma Resistance to Bortezomib by Increasing TSP-1-Dependent TGFβ1 Activation and Suppressing Immunity in Bone Marrow.
    Zhang C; Xu X; Trotter TN; Gowda PS; Lu Y; Suto MJ; Javed A; Murphy-Ullrich JE; Li J; Yang Y
    Mol Cancer Ther; 2022 Feb; 21(2):347-358. PubMed ID: 34907087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myeloma cells and bone marrow osteoblast interactions: role in the development of osteolytic lesions in multiple myeloma.
    Giuliani N; Rizzoli V
    Leuk Lymphoma; 2007 Dec; 48(12):2323-9. PubMed ID: 18067006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation.
    Boissy P; Andersen TL; Abdallah BM; Kassem M; Plesner T; Delaissé JM
    Cancer Res; 2005 Nov; 65(21):9943-52. PubMed ID: 16267019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myeloma bone disease: pathogenetic mechanisms and clinical assessment.
    Silvestris F; Lombardi L; De Matteo M; Bruno A; Dammacco F
    Leuk Res; 2007 Feb; 31(2):129-38. PubMed ID: 16764925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease.
    Silvestris F; Cafforio P; Tucci M; Grinello D; Dammacco F
    Br J Haematol; 2003 Jul; 122(1):39-52. PubMed ID: 12823344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple myeloma bone disease: Pathophysiology of osteoblast inhibition.
    Giuliani N; Rizzoli V; Roodman GD
    Blood; 2006 Dec; 108(13):3992-6. PubMed ID: 16917004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma.
    Qiang YW; Barlogie B; Rudikoff S; Shaughnessy JD
    Bone; 2008 Apr; 42(4):669-80. PubMed ID: 18294945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease.
    Brunetti G; Rizzi R; Oranger A; Gigante I; Mori G; Taurino G; Mongelli T; Colaianni G; Di Benedetto A; Tamma R; Ingravallo G; Napoli A; Faienza MF; Mestice A; Curci P; Specchia G; Colucci S; Grano M
    Oncotarget; 2014 Dec; 5(24):12950-67. PubMed ID: 25460501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of brucine on bone metabolism in multiple myeloma.
    Ma Y; Zhao J; Wang Y; Li Z; Feng J; Ren H
    Mol Med Rep; 2012 Aug; 6(2):367-70. PubMed ID: 22614932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Research Progress of Non-coding RNAs in the Regulation of Multiple Myeloma Bone Disease--Review].
    Li SM; Yu MY; Cui X
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2022 Jun; 30(3):. PubMed ID: 35680832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic interplay between bone and multiple myeloma: emerging roles of the osteoblast.
    Reagan MR; Liaw L; Rosen CJ; Ghobrial IM
    Bone; 2015 Jun; 75():161-9. PubMed ID: 25725265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic features of myeloma cells in the context of bone microenvironment: Implication for the pathophysiology and clinic of myeloma bone disease.
    Raimondi V; Toscani D; Marchica V; Burroughs-Garcia J; Storti P; Giuliani N
    Front Oncol; 2022; 12():1015402. PubMed ID: 36313705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of LINC01473 and CD74 in osteoblasts in multiple myeloma bone disease.
    Peng F; Yan S; Liu H; Liu Z; Jiang F; Cao P; Fu R
    J Investig Med; 2022 Jun; 70(5):1301-1307. PubMed ID: 35145037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consequences of daily administered parathyroid hormone on myeloma growth, bone disease, and molecular profiling of whole myelomatous bone.
    Pennisi A; Ling W; Li X; Khan S; Wang Y; Barlogie B; Shaughnessy JD; Yaccoby S
    PLoS One; 2010 Dec; 5(12):e15233. PubMed ID: 21188144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NOTCHing the bone: insights into multi-functionality.
    Engin F; Lee B
    Bone; 2010 Feb; 46(2):274-80. PubMed ID: 19520195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts.
    Faict S; Muller J; De Veirman K; De Bruyne E; Maes K; Vrancken L; Heusschen R; De Raeve H; Schots R; Vanderkerken K; Caers J; Menu E
    Blood Cancer J; 2018 Nov; 8(11):105. PubMed ID: 30409995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells.
    Silvestris F; Cafforio P; Calvani N; Dammacco F
    Br J Haematol; 2004 Aug; 126(4):475-86. PubMed ID: 15287939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth.
    Li X; Ling W; Khan S; Yaccoby S
    J Bone Miner Res; 2012 Aug; 27(8):1635-48. PubMed ID: 22460389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.