These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36902403)

  • 21. Environmental risk assessment of using antifouling paints on pleasure crafts in European Union waters.
    Ytreberg E; Lagerström M; Nöu S; Wiklund AE
    J Environ Manage; 2021 Mar; 281():111846. PubMed ID: 33401119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of grooming on a copper ablative coating: a six year study.
    Tribou M; Swain G
    Biofouling; 2017 Jul; 33(6):494-504. PubMed ID: 28604166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Release and detection of nanosized copper from a commercial antifouling paint.
    Adeleye AS; Oranu EA; Tao M; Keller AA
    Water Res; 2016 Oct; 102():374-382. PubMed ID: 27393962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic Copper Uptake and Release from Natural Seawater-A Fully Sustainable Antifouling Technique to Prevent Marine Growth.
    Elmas S; Skipper K; Salehifar N; Jamieson T; Andersson GG; Nydén M; Leterme SC; Andersson MR
    Environ Sci Technol; 2021 Jan; 55(1):757-766. PubMed ID: 33337864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface coatings select their micro and macrofouling communities differently on steel.
    Agostini VO; Macedo AJ; Muxagata E; Pinho GLL
    Environ Pollut; 2019 Nov; 254(Pt B):113086. PubMed ID: 31479812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of currently used marine antifouling paint biocides on green fluorescent proteins in Anemonia viridis.
    Ünver B; Evingür GA; Çavaş L
    J Fluoresc; 2022 Nov; 32(6):2087-2096. PubMed ID: 35917050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New analytical application for metal determination in antifouling paints.
    Ytreberg E; Lundgren L; Bighiu MA; Eklund B
    Talanta; 2015 Oct; 143():121-126. PubMed ID: 26078138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water- and Acid-Sensitive Cu
    Li H; Luo S; Zhang L; Zhao Z; Wu M; Li W; Liu FQ
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1910-1920. PubMed ID: 34928132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of PSII function in Cyanothece sp. ATCC 51142 during a light-dark cycle.
    Sicora CI; Chiș I; Chiș C; Sicora O
    Photosynth Res; 2019 Mar; 139(1-3):461-473. PubMed ID: 30357676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new approach to testing potential leaching toxicity of fouling release coatings (FRCs).
    Piazza V; Gambardella C; Garaventa F; Massanisso P; Chiavarini S; Faimali M
    Mar Environ Res; 2018 Oct; 141():305-312. PubMed ID: 30274719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biofouling of leisure boats as a source of metal pollution.
    Bighiu MA; Eriksson-Wiklund AK; Eklund B
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):997-1006. PubMed ID: 27766522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies.
    Valkirs AO; Seligman PF; Haslbeck E; Caso JS
    Mar Pollut Bull; 2003 Jun; 46(6):763-79. PubMed ID: 12787585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of long-term mechanical grooming on large-scale test panels coated with an antifouling and a fouling-release coating.
    Hearin J; Hunsucker KZ; Swain G; Stephens A; Gardner H; Lieberman K; Harper M
    Biofouling; 2015; 31(8):625-38. PubMed ID: 26359541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential disruptive effects of copper-based antifouling paints on the biodiversity of coastal macrofouling communities.
    Cima F; Varello R
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):8633-8646. PubMed ID: 35001280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecotoxicity in Hyriopsis bialatus of copper and zinc biocides used in metal-based antifouling paints.
    Elia AC; Magara G; Pastorino P; Zaccaroni A; Caldaroni B; Andreini R; Righetti M; Silvi M; Dörr AJM; Prearo M
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):18245-18258. PubMed ID: 34689271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Materials Selection for Antifouling Systems in Marine Structures.
    Donnelly B; Sammut K; Tang Y
    Molecules; 2022 May; 27(11):. PubMed ID: 35684344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper emissions from antifouling paint on recreational vessels.
    Schiff K; Diehl D; Valkirs A
    Mar Pollut Bull; 2004 Feb; 48(3-4):371-7. PubMed ID: 14972590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New promising antifouling agent based on polymeric biocide polyhexamethylene guanidine molybdate.
    Protasov A; Bardeau JF; Morozovskaya I; Boretska M; Cherniavska T; Petrus L; Tarasyuk O; Metelytsia L; Kopernyk I; Kalashnikova L; Dzhuzha O; Rogalsky S
    Environ Toxicol Chem; 2017 Sep; 36(9):2543-2551. PubMed ID: 28262978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diatom community structure on commercially available ship hull coatings.
    Zargiel KA; Coogan JS; Swain GW
    Biofouling; 2011 Oct; 27(9):955-65. PubMed ID: 21932984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring biofouling as a management tool for reducing toxic antifouling practices in the Baltic Sea.
    Wrange AL; Barboza FR; Ferreira J; Eriksson-Wiklund AK; Ytreberg E; Jonsson PR; Watermann B; Dahlström M
    J Environ Manage; 2020 Jun; 264():110447. PubMed ID: 32364954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.