These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36902914)

  • 1. Ultrasonic Fatigue Testing of Structural Steel S275JR+AR with Insights into Corrosion, Mean Stress and Frequency Effects.
    Gorash Y; Comlekci T; Styger G; Kelly J; Brownlie F; Milne L
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gigacycle fatigue in high strength steels.
    Furuya Y; Hirukawa H; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):643-656. PubMed ID: 31275457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data.
    Fitzka M; Schönbauer BM; Rhein RK; Sanaei N; Zekriardehani S; Tekalur SA; Carroll JW; Mayer H
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic fatigue testing of concrete.
    Fitzka M; Karr U; Granzner M; Melichar T; Rödhammer M; Strauss A; Mayer H
    Ultrasonics; 2021 Sep; 116():106521. PubMed ID: 34273639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines.
    Montalvão D; Wren A
    Heliyon; 2017 Nov; 3(11):e00466. PubMed ID: 29234738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Corroded Surface Morphology on Ultra-Low Cycle Fatigue of Steel Bridge Piers.
    Song F; Zhang T; Xie X
    Materials (Basel); 2021 Feb; 14(3):. PubMed ID: 33535540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalogue of NIMS fatigue data sheets.
    Furuya Y; Nishikawa H; Hirukawa H; Nagashima N; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):1055-1072. PubMed ID: 31762842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry.
    Heinz S; Balle F; Wagner G; Eifler D
    Ultrasonics; 2013 Dec; 53(8):1433-40. PubMed ID: 23545114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Pre-Corrosion Pits on Residual Fatigue Life for 42CrMo Steel.
    Liu D; Li Y; Xie X; Zhao J
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31269733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the effect of pre-strain and pre-fatigue on the monotonic behaviour of ultra-high strength steels.
    Cockings HL; Cockings BJ; Perkins KM
    Heliyon; 2020 Jul; 6(7):e04440. PubMed ID: 32695913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Loading Frequency and Loading Type on High-Cycle and Very-High-Cycle Fatigue of a High-Strength Steel.
    Hu Y; Sun C; Xie J; Hong Y
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30115898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue and Corrosion Fatigue Behaviour of Brazed Stainless Steel Joints AISI 304L/BAu-4 in Synthetic Exhaust Gas Condensate.
    Schmiedt-Kalenborn A; Lingnau LA; Manka M; Tillmann W; Walther F
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Pulse-Pause Sequences on the Self-Heating Behavior in Continuous Carbon Fiber-Reinforced Composites under Ultrasonic Cyclic Three-Point Bending Loads.
    Premanand A; Balle F
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress Concentration Analysis of the Corroded Steel Plate Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plates.
    Li A; Wang H; Li H; Kong D; Xu S
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of specimen geometry on temperature increase during ultrasonic fatigue testing.
    Bach J; Höppel HW; Bitzek E; Göken M
    Ultrasonics; 2013 Dec; 53(8):1412-6. PubMed ID: 23711329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simplified Approach for the Corrosion Fatigue Assessment of Steel Structures in Aggressive Environments.
    Milone A; Landolfo R
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Model of Ultrasonic Fatigue Test in Pure Bending.
    Yang D; Tang S; Hu Y; Nikitin A; Wang Q; Liu Y; Li L; He C; Li Y; Xu B; Wang C
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Corrosion Fatigue of Magnesium Alloys Aimed at Biomedical Applications: New Insights from the Influence of Testing Frequency and Surface Modification of the Alloy ZK60.
    Linderov M; Brilevsky A; Merson D; Danyuk A; Vinogradov A
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Fatigue Behaviors of a Medium-Carbon Pearlitic Wheel-Steel with Elongated Sulfides in High-Cycle and Very-High-Cycle Regimes.
    Liu L; Ma Y; Liu S; Wang S
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Experimental Analysis of the High-Cycle Fatigue Fracture of H13 Hot Forging Tool Steels.
    Calvo-García E; Valverde-Pérez S; Riveiro A; Álvarez D; Román M; Magdalena C; Badaoui A; Moreira P; Comesaña R
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.