BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36902943)

  • 1. Molecular Sieve, Halloysite, Sepiolite and Expanded Clay as a Tool in Reducing the Content of Trace Elements in
    Wyszkowski M; Wyszkowska J; Kordala N; Zaborowska M
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of the Adverse Impact of Copper, Nickel, and Zinc on Soil Microorganisms and Enzymes by Mineral Sorbents.
    Wyszkowska J; Borowik A; Zaborowska M; Kucharski J
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Usefulness of Sorbents in the Remediation of Soil Exposed to the Pressure of Cadmium and Cobalt.
    Wyszkowska J; Borowik A; Zaborowska M; Kucharski J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remediation of cobalt-polluted soil after application of selected substances and using oat (Avena sativa L.).
    Kosiorek M; Wyszkowski M
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16762-16780. PubMed ID: 30997643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.
    Rivelli AR; De Maria S; Puschenreiter M; Gherbin P
    Int J Phytoremediation; 2012 Apr; 14(4):320-34. PubMed ID: 22567714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applicability of Compost and Mineral Materials for Reducing the Effect of Diesel Oil on Trace Element Content in Soil.
    Wyszkowski M; Kordala N
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sewage Sludge as a Tool in Limiting the Content of Trace Elements in
    Wyszkowski M; Wyszkowska J; Borowik A; Kordala N
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytostabilization-Management Strategy for Stabilizing Trace Elements in Contaminated Soils.
    Radziemska M; Vaverková MD; Baryła A
    Int J Environ Res Public Health; 2017 Aug; 14(9):. PubMed ID: 28841169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace Element Contents in Petrol-Contaminated Soil Following the Application of Compost and Mineral Materials.
    Wyszkowski M; Kordala N
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace element contents in spring barley (
    Kosiorek M; Wyszkowski M
    Int J Phytoremediation; 2021; 23(7):669-683. PubMed ID: 33232177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts.
    da Silva CP; de Almeida TE; Zittel R; de Oliveira Stremel TR; Domingues CE; Kordiak J; de Campos SX
    Environ Monit Assess; 2016 Dec; 188(12):663. PubMed ID: 27837364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace Element Contents in Maize following the Application of Organic Materials to Reduce the Potential Adverse Effects of Nitrogen.
    Wyszkowski M; Brodowska MS; Kordala N
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization.
    Razmi B; Ghasemi-Fasaei R; Ronaghi A; Mostowfizadeh-Ghalamfarsa R
    Ecotoxicol Environ Saf; 2021 Jan; 207():111315. PubMed ID: 32947213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous reduction in cadmium and arsenic accumulation in rice (Oryza sativa L.) by iron/iron-manganese modified sepiolite.
    Zhou S; Liu Z; Sun G; Zhang Q; Cao M; Tu S; Xiong S
    Sci Total Environ; 2022 Mar; 810():152189. PubMed ID: 34890649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.).
    Lin J; Jiang W; Liu DC
    Bioresour Technol; 2003 Jan; 86(2):151-5. PubMed ID: 12653280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of chromium on growth attributes in sunflower (Helianthus annuus L.).
    Fozia A; Muhammad AZ; Muhammad A; Zafar MK
    J Environ Sci (China); 2008; 20(12):1475-80. PubMed ID: 19209635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron oxide nanoparticles improving multimetal phytoextraction in Helianthus annuus.
    Mounier L; Pédrot M; Bouhnik-Le-Coz M; Cabello-Hurtado F
    Chemosphere; 2024 Apr; 353():141534. PubMed ID: 38403123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus).
    Rahman MM; Azirun SM; Boyce AN
    PLoS One; 2013; 8(5):e62941. PubMed ID: 23667546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios.
    Shahbaz AK; Lewińska K; Iqbal J; Ali Q; Mahmood-Ur-Rahman ; Iqbal M; Abbas F; Tauqeer HM; Ramzani PMA
    J Environ Manage; 2018 Jul; 218():256-270. PubMed ID: 29684778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentrations of Pb and Other Associated Elements in Soil Dust 15 Years after the Introduction of Unleaded Fuel and the Human Health Implications in Pretoria, South Africa.
    Olowoyo JO; Lion N; Unathi T; Oladeji OM
    Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36011873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.