These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36903083)

  • 1. Strain-Balanced InAs/AlSb Type-II Superlattice Structures Growth on GaSb Substrate by Molecular Beam Epitaxy.
    Marchewka M; Jarosz D; Ruszała M; Juś A; Krzemiński P; Płoch D; Maś K; Wojnarowska-Nowak R
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical Properties of Midwave and Longwave InAs/GaSb Superlattices Grown on GaAs Substrates by Molecular Beam Epitaxy.
    Benyahia D; Kubiszyn Ł; Michalczewski K; Boguski J; Kębłowski A; Martyniuk P; Piotrowski J; Rogalski A
    Nanoscale Res Lett; 2018 Jul; 13(1):196. PubMed ID: 29978267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Interfacial Schemes on the Optical and Structural Properties of InAs/GaSb Type-II Superlattices.
    Alshahrani D; Kesaria M; Jiménez JJ; Kwan D; Srivastava V; Delmas M; Morales FM; Liang B; Huffaker D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8624-8635. PubMed ID: 36724387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and performance of GaSb-based quantum cascade detectors.
    Giparakis M; Windischhofer A; Isceri S; Schrenk W; Schwarz B; Strasser G; Andrews AM
    Nanophotonics; 2024 Apr; 13(10):1773-1780. PubMed ID: 38681680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectrically-Cooled InAs/GaSb Type-II Superlattice Detectors as an Alternative to HgCdTe in a Real-Time Mid-Infrared Backscattering Spectroscopy System.
    Müller R; Haertelt M; Niemasz J; Schwarz K; Daumer V; Flores YV; Ostendorf R; Rehm R
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33352960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterointerface engineering of broken-gap InAs/GaSb multilayer structures.
    Liu JS; Zhu Y; Goley PS; Hudait MK
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2512-7. PubMed ID: 25568961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peak separation method for sub-lattice strain analysis at atomic resolution: Application to InAs/GaSb superlattice.
    Kim H; Meng Y; Rouviére JL; Zuo JM
    Micron; 2017 Jan; 92():6-12. PubMed ID: 27816744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices.
    Bauer A; Dallner M; Herrmann A; Lehnhardt T; Kamp M; Höfling S; Worschech L; Forchel A
    Nanotechnology; 2010 Nov; 21(45):455603. PubMed ID: 20947950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain relief and growth optimization of GaSb on GaP by molecular beam epitaxy.
    Wang Y; Ruterana P; Chen J; Desplanque L; El Kazzi S; Wallart X
    J Phys Condens Matter; 2012 Aug; 24(33):335802. PubMed ID: 22836299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of interfacial strain in InAs/GaSb superlattices by aberration-corrected HRTEM and HAADF-STEM.
    Mahalingam K; Haugan HJ; Brown GJ; Eyink KG
    Ultramicroscopy; 2013 Apr; 127():70-5. PubMed ID: 23298538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimonide-based membranes synthesis integration and strain engineering.
    Zamiri M; Anwar F; Klein BA; Rasoulof A; Dawson NM; Schuler-Sandy T; Deneke CF; Ferreira SO; Cavallo F; Krishna S
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):E1-E8. PubMed ID: 27986953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InAs/InAsSb Strain-Balanced Superlattices for Longwave Infrared Detectors.
    Manyk T; Michalczewski K; Murawski K; Martyniuk P; Rutkowski J
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metalorganic chemical vapor deposition growth of InAs/GaSb type II superlattices with controllable AsxSb1-x interfaces.
    Li LG; Liu SM; Luo S; Yang T; Wang LJ; Liu FQ; Ye XL; Xu B; Wang ZG
    Nanoscale Res Lett; 2012 Feb; 7(1):160. PubMed ID: 22373387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Long-Wave Infrared Band-Edge (LWIR BE) thermometry instrument.
    Marquis J; Roodenko K; Pinsukanjana P; Frensley W
    Rev Sci Instrum; 2018 Jul; 89(7):074903. PubMed ID: 30068112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolithic integration of a 10 μm cut-off wavelength InAs/GaSb type-II superlattice diode on GaAs platform.
    Kwan DCM; Kesaria M; Jiménez JJ; Srivastava V; Delmas M; Liang BL; Morales FM; Huffaker DL
    Sci Rep; 2022 Jul; 12(1):11616. PubMed ID: 35804001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-plane optical anisotropy of InAs/GaSb superlattices with alternate interfaces.
    Wu S; Chen Y; Yu J; Gao H; Jiang C; Huang ; Zhang Y; Wei Y; Ma W
    Nanoscale Res Lett; 2013; 8(1):298. PubMed ID: 23799946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective area heteroepitaxy of GaSb on GaAs (001) for in-plane InAs nanowire achievement.
    Fahed M; Desplanque L; Troadec D; Patriarche G; Wallart X
    Nanotechnology; 2016 Dec; 27(50):505301. PubMed ID: 27861165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance comparison between the InAs-based and GaSb-based type-II superlattice photodiodes for long wavelength infrared detection.
    Wang F; Chen J; Xu Z; Zhou Y; He L
    Opt Express; 2017 Feb; 25(3):1629-1635. PubMed ID: 29519017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative advantages of a type-II superlattice barrier over an AlGaSb barrier for enhanced performance of InAs/GaSb LWIR nBn photodetectors.
    Lee HJ; Jang A; Kim YH; Jung H; Bidenko P; Kim S; Kim M; Nah J
    Opt Lett; 2021 Aug; 46(16):3877-3880. PubMed ID: 34388764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of GaAs and GaSb substrates on detection parameters of InAs/GaSb superlattice-based mid-infrared interband cascade photodetectors.
    Hackiewicz K; Kopytko M; Rutkowski J; Martyniuk P; Ciura Ł
    Appl Opt; 2020 Jun; 59(17):E42-E47. PubMed ID: 32543512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.