BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36903199)

  • 21. Neutron yields and effective doses produced by Galactic Cosmic Ray interactions in shielded environments in space.
    Heilbronn LH; Borak TB; Townsend LW; Tsai PE; Burnham CA; McBeth RA
    Life Sci Space Res (Amst); 2015 Nov; 7():90-9. PubMed ID: 26553642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gamma-ray and neutron shielding features for some fast neutron moderators of interest in
    Elsheikh NAA
    Appl Radiat Isot; 2020 Feb; 156():109012. PubMed ID: 32056691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variation in lunar neutron dose estimates.
    Slaba TC; Blattnig SR; Clowdsley MS
    Radiat Res; 2011 Dec; 176(6):827-41. PubMed ID: 21859325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A radiation shielding sensitivity analysis based on metal hydrides multilayers.
    Muth B; Jung WS; Kwak JK; Kim SJ; Park CJ
    J Radiol Prot; 2020 Sep; 40(3):774-789. PubMed ID: 32503019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neutron production in tissue-like media and shielding materials irradiated with high-energy ion beams.
    Gudowska I; Kopec M; Sobolevsky N
    Radiat Prot Dosimetry; 2007; 126(1-4):652-6. PubMed ID: 17504751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Kaolin Clay and ZnO-Nanoparticles on the Radiation Shielding Properties of Epoxy Resin Composites.
    Abbas MI; Alahmadi AH; Elsafi M; Alqahtani SA; Yasmin S; Sayyed MI; Gouda MM; El-Khatib AM
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the effectiveness of steel for shielding photoneutrons produced in medical linear accelerators: A Monte Carlo particle transport study.
    Moghaddasi L; Colyer C
    Phys Med; 2022 Jun; 98():53-62. PubMed ID: 35490530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal shielding thickness for galactic cosmic ray environments.
    Slaba TC; Bahadori AA; Reddell BD; Singleterry RC; Clowdsley MS; Blattnig SR
    Life Sci Space Res (Amst); 2017 Feb; 12():1-15. PubMed ID: 28212703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arrangement of high-energy neutron irradiation field and shielding experiment using 4 m concrete at KENS.
    Nakao N; Yashima H; Kawai M; Oishi K; Nakashima H; Masumoto K; Matsumura H; Sasaki S; Numajiri M; Sanami T; Wang Q; Toyoda A; Takahashi K; Iijima K; Eda K; Ban S; Hirayama H; Muto S; Nunomiya T; Yonai S; Rasolonjatovo DR; Terunuma K; Yamauchi K; Sarkar PK; Kim E; Nakamura T; Maruhashi A
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):553-7. PubMed ID: 16604697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neutron shielding calculations for neutron imaging facility at the Maâmora Triga reactor.
    Ouardi A
    Appl Radiat Isot; 2021 Oct; 176():109852. PubMed ID: 34252750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thick shielding against galactic cosmic radiation: A Monte Carlo study with focus on the role of secondary neutrons.
    Horst F; Boscolo D; Durante M; Luoni F; Schuy C; Weber U
    Life Sci Space Res (Amst); 2022 May; 33():58-68. PubMed ID: 35491030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on a High-Boron-Content Stainless Steel Composite for Nuclear Radiation.
    Sun WQ; Hu G; Yu XH; Shi J; Xu H; Wu RJ; He C; Yi Q; Hu HS
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attenuation of Gamma Radiation Using ClearView Radiation ShieldingTM in Nuclear Power Plants, Hospitals and Radiopharmacies.
    Bakshi J; Chu BP
    Health Phys; 2020 Dec; 119(6):776-785. PubMed ID: 32897986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis and improvement of cyclotron thallium target room shield.
    Hajiloo N; Raisali G; Aslani G
    Radiat Prot Dosimetry; 2008; 130(4):427-33. PubMed ID: 18417490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of shielding material properties for effective space radiation protection.
    Naito M; Kodaira S; Ogawara R; Tobita K; Someya Y; Kusumoto T; Kusano H; Kitamura H; Koike M; Uchihori Y; Yamanaka M; Mikoshiba R; Endo T; Kiyono N; Hagiwara Y; Kodama H; Matsuo S; Takami Y; Sato T; Orimo SI
    Life Sci Space Res (Amst); 2020 Aug; 26():69-76. PubMed ID: 32718689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical Investigation of Fast Neutron and Gamma Radiation Properties of Polycarbonate-Bismuth Oxide Composites Using Geant4.
    Akhdar H
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shielding for transporting an
    Martínez-Ovalle SA; Garcia-Rodriguez AM; Vega-Carrillo HR; Sandoval-Garzón MA; Jaramillo Garzón W; Sajo Bohus L
    Appl Radiat Isot; 2020 Jul; 161():109175. PubMed ID: 32321697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo characterizations mapping of the (γ,n) and (n,γ) photonuclear reactions in the high energy X-ray radiation therapy.
    Ghiasi H
    Rep Pract Oncol Radiother; 2014 Jan; 19(1):30-6. PubMed ID: 24936317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the production of neutrons in laminated barriers for 10 MV medical accelerator rooms.
    Facure A; da Silva AX; da Rosa LA; Cardoso SC; Rezende GF
    Med Phys; 2008 Jul; 35(7):3285-92. PubMed ID: 18697553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on the Influence of Reinforced Particles Spatial Arrangement on the Neutron Shielding Performance of the Composites.
    Sun W; Hu G; Xu H; Li Y; Wang C; Men T; Ji F; Lao W; Yu B; Sheng L; Li J; Jia Q; Xiong S; Hu H
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.