These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36903254)

  • 41. Microcrystalline Cellulose-Supported Gold Nanoparticle Catalysts for Homocoupling of Phenylboronic Acids.
    Paul Reddy K; Murugadoss A
    Langmuir; 2022 Feb; 38(7):2205-2212. PubMed ID: 35148109
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Mar; 58(6):3753-60. PubMed ID: 20187652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrolysis of cellulose in SO₃H-functionalized ionic liquids.
    Tao F; Song H; Chou L
    Bioresour Technol; 2011 Oct; 102(19):9000-6. PubMed ID: 21757338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Greener production of microcrystalline cellulose (MCC) from Saccharum spontaneum (Kans grass): Statistical optimization.
    Baruah J; Deka RC; Kalita E
    Int J Biol Macromol; 2020 Jul; 154():672-682. PubMed ID: 32198044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of agglomerated directly compressible diluent consisting of brittle and ductile materials.
    Gohel MC; Jogani PD; Bariya SE
    Pharm Dev Technol; 2003; 8(2):143-51. PubMed ID: 12760565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tailoring Interfacial Adhesion between PBAT Matrix and PTFE-Modified Microcrystalline Cellulose Additive for Advanced Composites.
    Wang H; Liu X; Liu J; Wu M; Huang Y
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanochemically functionalized and fibrillated microcrystalline cellulose as a filler in silicone foam: An integrated experimental and simulation investigation.
    Lee K; Sim YL; Jeong H; Kim A; Lee Y; Shim SE; Qian Y
    Carbohydr Polym; 2024 Mar; 327():121660. PubMed ID: 38171679
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A study on the effect of wet granulation on microcrystalline cellulose particle structure and performance.
    Badawy SI; Gray DB; Hussain MA
    Pharm Res; 2006 Mar; 23(3):634-40. PubMed ID: 16382277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose.
    Coelho CCS; Cerqueira MA; Pereira RN; Pastrana LM; Freitas-Silva O; Vicente AA; Cabral LMC; Teixeira JA
    Carbohydr Polym; 2017 Oct; 174():1181-1191. PubMed ID: 28821043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation.
    Buckton G; Yonemochi E; Yoon WL; Moffat AC
    Int J Pharm; 1999 Apr; 181(1):41-7. PubMed ID: 10370201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste.
    Zhao T; Chen Z; Lin X; Ren Z; Li B; Zhang Y
    Carbohydr Polym; 2018 Mar; 184():164-170. PubMed ID: 29352907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reinforcement Efficiency of Cellulose Microfibers for the Tensile Stiffness and Strength of Rigid Low-Density Polyurethane Foams.
    Andersons J; Kirpluks M; Cabulis U
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Movat pentachrome stain as a means of identifying microcrystalline cellulose among other particulates found in lung tissue.
    Sigdel S; Gemind JT; Tomashefski JF
    Arch Pathol Lab Med; 2011 Feb; 135(2):249-54. PubMed ID: 21284446
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds.
    Owolabi AF; Haafiz MK; Hossain MS; Hussin MH; Fazita MR
    Int J Biol Macromol; 2017 Feb; 95():1228-1234. PubMed ID: 27836655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microwave assisted conversion of microcrystalline cellulose into value added chemicals using dilute acid catalyst.
    Ching TW; Haritos V; Tanksale A
    Carbohydr Polym; 2017 Feb; 157():1794-1800. PubMed ID: 27987897
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface-modified microcrystalline cellulose for reinforcement of chitosan film.
    Huang X; Xie F; Xiong X
    Carbohydr Polym; 2018 Dec; 201():367-373. PubMed ID: 30241830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption of an amine drug onto microcrystalline cellulose and silicified microcrystalline cellulose samples.
    Steele DF; Edge S; Tobyn MJ; Moreton RC; Staniforth JN
    Drug Dev Ind Pharm; 2003 Apr; 29(4):475-87. PubMed ID: 12737540
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterisation of microcrystalline cellulose from oil palm fibres for food applications.
    Xiang LY; P Mohammed MA; Samsu Baharuddin A
    Carbohydr Polym; 2016 Sep; 148():11-20. PubMed ID: 27185110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal.
    El-Naggar ME; Radwan EK; El-Wakeel ST; Kafafy H; Gad-Allah TA; El-Kalliny AS; Shaheen TI
    Int J Biol Macromol; 2018 Jul; 113():248-258. PubMed ID: 29476854
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A green approach of improving interface and performance of plant fibre composites using microcrystalline cellulose.
    Pichandi S; Rana S; Parveen S; Fangueiro R
    Carbohydr Polym; 2018 Oct; 197():137-146. PubMed ID: 30007598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.