These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3690334)

  • 1. Effects of early chronic phenobarbital treatment on the maturation of energy metabolism in the developing rat brain. II. Incorporation of beta-hydroxybutyrate into amino acids.
    Pereira de Vasconcelos A; Schroeder H; Nehlig A
    Brain Res; 1987 Dec; 433(2):231-6. PubMed ID: 3690334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of early chronic phenobarbital treatment on the maturation of energy metabolism in the developing rat brain. I. Incorporation of glucose carbon into amino acids.
    Pereira de Vasconcelos A; Nehlig A
    Brain Res; 1987 Dec; 433(2):219-29. PubMed ID: 3690333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of early chronic phenobarbital treatment on cerebral arteriovenous differences of glucose and ketone bodies in the developing rat.
    Schroeder H; Bomont L; Nehlig A
    Int J Dev Neurosci; 1991; 9(5):453-61. PubMed ID: 1781304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of early chronic diazepam treatment on incorporation of glucose and beta-hydroxybutyrate into cerebral amino acids: relation to undernutrition.
    Schroeder H; Collignon A; Uttscheid L; Pereira de Vasconcelos A; Nehlig A
    Int J Dev Neurosci; 1994 Aug; 12(5):471-84. PubMed ID: 7817789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of early neonatal phenobarbital exposure on cerebral energy metabolism and behavior.
    Pereira de Vasconcelos A; Colin C; Desor D; Divry M; Nehlig A
    Exp Neurol; 1990 May; 108(2):176-87. PubMed ID: 2335196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats.
    Sauer LA; Dauchy RT
    Cancer Res; 1983 Aug; 43(8):3497-503. PubMed ID: 6861121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate, 3-hydroxybutyrate, and glucose as substrates for the early postnatal rat brain.
    Dombrowski GJ; Swiatek KR; Chao KL
    Neurochem Res; 1989 Jul; 14(7):667-75. PubMed ID: 2779727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of amino acid by the deprivation of energy sources in the cerebral cortex.
    Ando M; Itoh T
    Brain Dev; 1989; 11(3):169-74. PubMed ID: 2751063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative effect of fasting on acetoacetate and D-3-hydroxybutyrate metabolism in the newborn chick.
    Linares A; Diaz R; Caamaño GJ; Gonzalez FJ; Garcia-Peregrin E
    Biochem Int; 1992 Dec; 28(4):683-91. PubMed ID: 1482404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. beta-Hydroxybutyrate as a precursor to the acetyl moiety of acetylcholine.
    Sterling GH; McCafferty MR; O'Neill JJ
    J Neurochem; 1981 Nov; 37(5):1250-9. PubMed ID: 7028919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional ketone body utilization by rat brain in starvation and diabetes.
    Hawkins RA; Mans AM; Davis DW
    Am J Physiol; 1986 Feb; 250(2 Pt 1):E169-78. PubMed ID: 2937307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of glucose administration on carbohydrate metabolism after head injury.
    Robertson CS; Goodman JC; Narayan RK; Contant CF; Grossman RG
    J Neurosurg; 1991 Jan; 74(1):43-50. PubMed ID: 1984505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of chronic phenobarbital treatment on local cerebral glucose utilization in the developing rat.
    Pereira de Vasconcelos A; Boyet S; Nehlig A
    Brain Res Dev Brain Res; 1990 May; 53(2):168-78. PubMed ID: 2357789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of label from D- -hydroxy( 14 C)butyrate and (3- 14 C)acetoacetate into amino acids in rat brain in vivo.
    Cremer JE
    Biochem J; 1971 Apr; 122(2):135-8. PubMed ID: 5117566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ketone body utilization in duodenum. Differential effect of fasting on lipogenesis from acetoacetate and 3-hydroxybutyrate.
    Caamaño GJ; Sánchez-del-Castillo MA; Iglesias J; García-Peregrín E; Linares A
    Biochem Int; 1989 Oct; 19(4):855-61. PubMed ID: 2575906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of 3-hydroxybutyrate by chick cerebral hemispheres during postnatal maturation.
    Nehlig A; Lehr PR; Gayet J
    Comp Biochem Physiol B; 1978; 61(1):59-64. PubMed ID: 318363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The metabolism of D- and L-3-hydroxybutyrate in developing rat brain.
    Swiatek KR; Dombrowski GJ; Chao KL
    Biochem Med; 1984 Jun; 31(3):332-46. PubMed ID: 6477538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of alterations in ketone body availability on the utilization of beta-hydroxybutyrate by developing rat brain.
    Crane SC; Morgan BL
    J Nutr; 1983 May; 113(5):1063-72. PubMed ID: 6842301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chronic lead ingestion by rats on glucose metabolism and acetylcholine synthesis in cerebral cortex slices.
    Sterling GH; O'Neill KJ; McCafferty MR; O'Neill JJ
    J Neurochem; 1982 Aug; 39(2):592-6. PubMed ID: 7086439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of ketone bodies by chick brain and spinal cord during embryonic and postnatal development.
    Linares A; Caamaño GJ; Diaz R; Gonzalez FJ; Garcia-Peregrin E
    Neurochem Res; 1993 Oct; 18(10):1107-12. PubMed ID: 8255360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.