BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36903588)

  • 1. Mechanistic DFT Study of 1,3-Dipolar Cycloadditions of Azides with Guanidine.
    Antol I; Glasovac Z; Margetić D
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Azide-Allene Dipolar Cycloaddition: Is DFT Able to Predict Site- and Regio-Selectivity?
    Molteni G; Ponti A
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33578668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational study on the mechanism of the reaction of benzenesulfonyl azides with oxabicyclic alkenes.
    Akuamoah DA; Tia R; Adei E
    J Mol Model; 2020 Oct; 26(11):314. PubMed ID: 33098013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophilic Azides for Materials Synthesis and Chemical Biology.
    Xie S; Sundhoro M; Houk KN; Yan M
    Acc Chem Res; 2020 Apr; 53(4):937-948. PubMed ID: 32207916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Aspects on [3+2] Cycloaddition (32CA) Reactions of Azides to Nitroolefins: A Computational and Kinetic Study.
    Kawamura MY; Alegre-Requena JV; Barbosa TM; Tormena CF; Paton RS; Ferreira MAB
    Chemistry; 2022 Dec; 28(69):e202202294. PubMed ID: 36074001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1,3-Dipolar cycloaddition reactivities of perfluorinated aryl azides with enamines and strained dipolarophiles.
    Xie S; Lopez SA; Ramström O; Yan M; Houk KN
    J Am Chem Soc; 2015 Mar; 137(8):2958-66. PubMed ID: 25553488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the 1,3-Dipolar Cycloadditions of Allenes.
    Yu S; Vermeeren P; van Dommelen K; Bickelhaupt FM; Hamlin TA
    Chemistry; 2020 Sep; 26(50):11529-11539. PubMed ID: 32220086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism.
    Boren BC; Narayan S; Rasmussen LK; Zhang L; Zhao H; Lin Z; Jia G; Fokin VV
    J Am Chem Soc; 2008 Jul; 130(28):8923-30. PubMed ID: 18570425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of tetrazole formation by addition of azide to nitriles.
    Himo F; Demko ZP; Noodleman L; Sharpless KB
    J Am Chem Soc; 2002 Oct; 124(41):12210-6. PubMed ID: 12371861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study on the reaction pathways and the mechanism of 1,3- dipolar cycloaddition of vinyl acetylene and methyl azide.
    Siadati SA; Mahboobifar A; Nasiri R
    Comb Chem High Throughput Screen; 2014; 17(8):703-8. PubMed ID: 24852164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Study on Cooperation Catalysis of Chiral Guanidine/ Copper(I) in Asymmetric Azide-Alkyne Cycloaddition/[2 + 2] Cascade Reaction.
    Wei Q; Zhang Y; Lv C; Hu C; Su Z
    J Org Chem; 2023 Jul; 88(14):9973-9986. PubMed ID: 37437267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insights on azide-nitrile cycloadditions: on the dialkyltin oxide-trimethylsilyl azide route and a new Vilsmeier-Haack-type organocatalyst.
    Cantillo D; Gutmann B; Kappe CO
    J Am Chem Soc; 2011 Mar; 133(12):4465-75. PubMed ID: 21381737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1, 3-Dipolar cycloaddition reactions of selected 1,3-dipoles with 7-isopropylidenenorbornadiene and follow-up thermolytic cleavage: A computational study.
    Arhin G; Adams AH; Opoku E; Tia R; Adei E
    J Mol Graph Model; 2019 Nov; 92():267-279. PubMed ID: 31425904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselectivity of vinyl sulfone based 1,3-dipolar cycloaddition reactions with sugar azides by computational and experimental studies.
    Sahu D; Dey S; Pathak T; Ganguly B
    Org Lett; 2014 Apr; 16(8):2100-3. PubMed ID: 24697165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies.
    Hamlin TA; Levandowski BJ; Narsaria AK; Houk KN; Bickelhaupt FM
    Chemistry; 2019 May; 25(25):6342-6348. PubMed ID: 30779472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies on the regioselectivity of iridium-catalyzed 1,3-dipolar azide-alkyne cycloaddition reactions.
    Luo Q; Jia G; Sun J; Lin Z
    J Org Chem; 2014 Dec; 79(24):11970-80. PubMed ID: 25222638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of thio acid/azide amidation.
    Kolakowski RV; Shangguan N; Sauers RR; Williams LJ
    J Am Chem Soc; 2006 May; 128(17):5695-702. PubMed ID: 16637636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.