BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 36903648)

  • 1. QM/MM Modeling of the Flavin Functionalization in the RutA Monooxygenase.
    Grigorenko B; Domratcheva T; Nemukhin A
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavin-N5OOH Functions as both a Powerful Nucleophile and a Base in the Superfamily of Flavoenzymes.
    Zhang Q; Chen Q; Shaik S; Wang B
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202318629. PubMed ID: 38299700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction mechanism and kinetics of the two-component flavoprotein dimethyl sulfone monooxygenase system: Using hydrogen peroxide for monooxygenation and substrate cleavage.
    Mangkalee M; Oonanant W; Aonbangkhen C; Pimviriyakul P; Tinikul R; Chaiyen P; Insin N; Sucharitakul J
    FEBS J; 2023 Nov; 290(21):5171-5195. PubMed ID: 37522421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint functions of protein residues and NADP(H) in oxygen activation by flavin-containing monooxygenase.
    Orru R; Pazmiño DE; Fraaije MW; Mattevi A
    J Biol Chem; 2010 Nov; 285(45):35021-8. PubMed ID: 20807767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Properties of Flavin in BLUF and LOV Photoreceptor Proteins from Hybrid QM/MM Molecular Dynamics Simulation.
    Kılıç M; Ensing B
    J Phys Chem B; 2024 Apr; 128(13):3069-3080. PubMed ID: 38518376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis.
    White MD; Payne KA; Fisher K; Marshall SA; Parker D; Rattray NJ; Trivedi DK; Goodacre R; Rigby SE; Scrutton NS; Hay S; Leys D
    Nature; 2015 Jun; 522(7557):502-6. PubMed ID: 26083743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel eco-friendly polymeric photosensitizer based on chitosan and flavin mononucleotide.
    Sacchetto J; Gutierrez E; Reta GF; Gatica E; Miskoski S; Montaña MP; Natera J; Massad WA
    Photochem Photobiol Sci; 2023 Dec; 22(12):2827-2837. PubMed ID: 37839053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of the bacterial luciferase-flavin mononucleotide complex combining flexible docking with structure-activity data.
    Lin LY; Sulea T; Szittner R; Vassilyev V; Purisima EO; Meighen EA
    Protein Sci; 2001 Aug; 10(8):1563-71. PubMed ID: 11468353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of the alkanesulfonate monooxygenase MsuD provide insight into C-S bond cleavage, substrate scope, and an unexpected role for the tetramer.
    Liew JJM; El Saudi IM; Nguyen SV; Wicht DK; Dowling DP
    J Biol Chem; 2021 Jul; 297(1):100823. PubMed ID: 34029591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavin mononucleotide in visible light photoinitiating systems for multiple-photocrosslinking and photoencapsulation strategies.
    Sun G; He X; Feng M; Xu X; Chen J; Wang Y
    Acta Biomater; 2023 Dec; 172():272-279. PubMed ID: 37797710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of MAB_4123, a putative flavin-dependent monooxygenase from Mycobacterium abscessus.
    Ung KL; Poussineau C; Couston J; Alsarraf HMAB; Blaise M
    Acta Crystallogr F Struct Biol Commun; 2023 May; 79(Pt 5):128-136. PubMed ID: 37132477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-transfer reactions by enzymatic flavin-N
    Teufel R
    Curr Opin Chem Biol; 2024 May; 80():102464. PubMed ID: 38739969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin-Dependent Monooxygenases NotI and NotI' Mediate Spiro-Oxindole Formation in Biosynthesis of the Notoamides.
    Fraley AE; Tran HT; Kelly SP; Newmister SA; Tripathi A; Kato H; Tsukamoto S; Du L; Li S; Williams RM; Sherman DH
    Chembiochem; 2020 Sep; 21(17):2449-2454. PubMed ID: 32246875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Flavins Photochemical Activity in Hydrogen Atom Abstraction and Triplet Sensitization through Ring-Contraction.
    Rehpenn A; Hindelang S; Truong KN; Pöthig A; Storch G
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202318590. PubMed ID: 38339882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of flavin mononucleotide by capturing its "tail" with porous organic polymers for long-term photocatalytic degradation of micropollutants.
    Tang P; Ji B; Sun G
    J Hazard Mater; 2022 Aug; 435():128982. PubMed ID: 35472536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates.
    Zelenka J; Cibulka R; Roithová J
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15412-15420. PubMed ID: 31364790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial stigmasterol degradation involving radical flavin delta-24 desaturase and molybdenum-dependent C26 hydroxylase.
    Zhan T; Jacoby C; Jede M; Knapp B; Ferlaino S; Günter A; Drepper F; Müller M; Weber S; Boll M
    J Biol Chem; 2024 May; 300(5):107243. PubMed ID: 38556086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Oxygen Dilemma: A Severe Challenge for the Application of Monooxygenases?
    Holtmann D; Hollmann F
    Chembiochem; 2016 Aug; 17(15):1391-8. PubMed ID: 27194219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Fungal 2,18-Dioxo-2,18-
    Dai Y; Xie XL; Dai HF; Li SM
    Org Lett; 2023 Jun; 25(22):4092-4097. PubMed ID: 37249271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-Selective Radical Aromatic C-H Functionalization of Alloxazine and Flavin through Ground-State Single Electron Transfer.
    Das A; Charpentier O; Hessin C; Schleinitz J; Pianca D; Le Breton N; Choua S; Grimaud L; Gourlaouen C; Desage-El Murr M
    Angew Chem Int Ed Engl; 2024 Apr; ():e202403417. PubMed ID: 38627209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.