These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors. Nouman MT; Kim HW; Woo JM; Hwang JH; Kim D; Jang JH Sci Rep; 2016 May; 6():26452. PubMed ID: 27194128 [TBL] [Abstract][Full Text] [Related]
64. Pesticide detection with covalent-organic-framework nanofilms at terahertz band. Xu W; Wang S; Li W; Zhang Z; Wang Y; Yang Y; Zhang H; Liu P; Xie L; Ying Y Biosens Bioelectron; 2022 Aug; 209():114274. PubMed ID: 35436738 [TBL] [Abstract][Full Text] [Related]
65. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Ho IC; Guo X; Zhang XC Opt Express; 2010 Feb; 18(3):2872-83. PubMed ID: 20174116 [TBL] [Abstract][Full Text] [Related]
66. External bias dependent dynamic terahertz propagation through BiFeO Jana A; Rane S; Roy Choudhury P; Roy Chowdhury D Nanotechnology; 2022 May; 33(32):. PubMed ID: 35487199 [TBL] [Abstract][Full Text] [Related]
67. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Zhang Y; Qiao S; Liang S; Wu Z; Yang Z; Feng Z; Sun H; Zhou Y; Sun L; Chen Z; Zou X; Zhang B; Hu J; Li S; Chen Q; Li L; Xu G; Zhao Y; Liu S Nano Lett; 2015 May; 15(5):3501-6. PubMed ID: 25919444 [TBL] [Abstract][Full Text] [Related]
68. Resonantly enhanced terahertz four-wave mixing in fluorides. Noskovicova E; Koys M; Jerigova M; Velic D; Lorenc D Opt Lett; 2024 Aug; 49(15):4370-4372. PubMed ID: 39090936 [TBL] [Abstract][Full Text] [Related]
73. Reduced Photoconductivity Observed by Time-Resolved Terahertz Spectroscopy in Metal Nanofilms with and without Adhesion Layers. Alberding BG; Kushto GP; Lane PA; Heilweil EJ Appl Phys Lett; 2016 May; 108(22):. PubMed ID: 27818524 [TBL] [Abstract][Full Text] [Related]
74. Substrate-induced electronic localization in monolayer MoS Wang C; Xu W; Mei H; Qin H; Zhao X; Zhang C; Yuan H; Zhang J; Xu Y; Li P; Li M Opt Lett; 2019 Sep; 44(17):4139-4142. PubMed ID: 31465348 [TBL] [Abstract][Full Text] [Related]
75. Digital- to Analog-Type Terahertz Modulation Controlled by Mosaicity of the Substrate Template in Rare-Earth Nickelate Thin Films. Prajapati GL; Das S; Rana DS ACS Appl Mater Interfaces; 2019 Sep; 11(36):33109-33115. PubMed ID: 31429268 [TBL] [Abstract][Full Text] [Related]
76. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Chen Z; Chen X; Tao L; Chen K; Long M; Liu X; Yan K; Stantchev RI; Pickwell-MacPherson E; Xu JB Nat Commun; 2018 Nov; 9(1):4909. PubMed ID: 30464172 [TBL] [Abstract][Full Text] [Related]
77. Single/Dual/Triple Broadband Metasurface Based Polarisation Converter with High Angular Stability for Terahertz Applications. Pati SS; Sahoo S Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144170 [TBL] [Abstract][Full Text] [Related]
78. Graphene-supported tunable bidirectional terahertz metamaterials absorbers. Peng J; Leng J; Cao D; He X; Lin F; Liu F Appl Opt; 2021 Aug; 60(22):6520-6525. PubMed ID: 34612889 [TBL] [Abstract][Full Text] [Related]
79. Broadband dynamically tunable terahertz absorber based on a Dirac semimetal. Xiong H; Shen Q; Ji Q Appl Opt; 2020 Jun; 59(16):4970-4976. PubMed ID: 32543494 [TBL] [Abstract][Full Text] [Related]
80. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons. Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]