These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36903720)

  • 1. Diamane-like Films Based on Twisted G/BN Bilayers: DFT Modelling of Atomic Structures and Electronic Properties.
    Demin VA; Chernozatonskii LA
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized hexagonal boron nitride bilayers: desirable electro-optical properties for optoelectronic applications.
    Shu H
    Phys Chem Chem Phys; 2024 Jul; 26(29):20059-20067. PubMed ID: 39007695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-Low Thermal Conductivity of Moiré Diamanes.
    Chowdhury S; Demin VA; Chernozatonskii LA; Kvashnin AG
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of Numerous Moiré Superlattices in Twisted Multilayer Graphene for Twistronics and Straintronics Applications.
    Brzhezinskaya M; Kononenko O; Matveev V; Zotov A; Khodos II; Levashov V; Volkov V; Bozhko SI; Chekmazov SV; Roshchupkin D
    ACS Nano; 2021 Jul; 15(7):12358-12366. PubMed ID: 34255478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced thermoelectric performance of a wide-bandgap twisted heterostructure of graphene and boron nitride.
    Kumar N; Bera C
    Nanoscale; 2024 Apr; 16(16):7951-7957. PubMed ID: 38546266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling Atomic-Scale Moiré Features and Atomic Reconstructions in High-Angle Commensurately Twisted Transition Metal Dichalcogenide Homobilayers.
    Zhao X; Qiao J; Chan SM; Li J; Dan J; Ning S; Zhou W; Quek SY; Pennycook SJ; Loh KP
    Nano Lett; 2021 Apr; 21(7):3262-3270. PubMed ID: 33749268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover between rigid and reconstructed moiré lattice in
    Kinoshita K; Lin YC; Moriya R; Okazaki S; Onodera M; Zhang Y; Senga R; Watanabe K; Taniguchi T; Sasagawa T; Suenaga K; Machida T
    Nanoscale; 2024 Jul; ():. PubMed ID: 38953240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-Principles Study on the Nanofriction Properties of Diamane: The Thinnest Diamond Film.
    Wang J; Li L; Wang J; Yang W; Guo P; Li M; Liu D; Zeng H; Zhao B
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial thermal transport between graphene and diamane.
    Hong Y; Kretchmer JS
    J Chem Phys; 2022 Apr; 156(16):164703. PubMed ID: 35489998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilayered graphene/h-BN with folded holes as new nanoelectronic materials: modeling of structures and electronic properties.
    Chernozatonskii LA; Demin VA; Bellucci S
    Sci Rep; 2016 Nov; 6():38029. PubMed ID: 27897237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancements in theoretical and experimental investigations on diamane materials.
    Liu B; Emmanuel E; Liang T; Wang B
    Nanoscale; 2023 Jun; 15(25):10498-10512. PubMed ID: 37309977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural stability and electronic and mechanical properties of nitrogen- and boron-doped fluorinated diamane.
    Gao L; Liu Y; Liang Y; Gao N; Liu J; Li H
    Phys Chem Chem Phys; 2023 Sep; 25(36):24518-24525. PubMed ID: 37656439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band Engineering of Large-Twist-Angle Graphene/h-BN Moiré Superlattices with Pressure.
    Gao Y; Lin X; Smart T; Ci P; Watanabe K; Taniguchi T; Jeanloz R; Ni J; Wu J
    Phys Rev Lett; 2020 Nov; 125(22):226403. PubMed ID: 33315461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser Shock Tuning Dynamic Interlayer Coupling in Graphene-Boron Nitride Moiré Superlattices.
    Kumar P; Liu J; Motlag M; Tong L; Hu Y; Huang X; Bandopadhyay A; Pati SK; Ye L; Irudayaraj J; Cheng GJ
    Nano Lett; 2019 Jan; 19(1):283-291. PubMed ID: 30525695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moiré patterns of twisted bilayer antimonene and their structural and electronic transition.
    An Q; Moutanabbir O; Guo H
    Nanoscale; 2021 Aug; 13(31):13427-13436. PubMed ID: 34477748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Twisted Bilayer Graphene via the Wetting Transfer Method.
    Hou Y; Ren X; Fan J; Wang G; Dai Z; Jin C; Wang W; Zhu Y; Zhang S; Liu L; Zhang Z
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40958-40967. PubMed ID: 32805838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine.
    Tang S; Yu J; Liu L
    Phys Chem Chem Phys; 2013 Apr; 15(14):5067-77. PubMed ID: 23450178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of electronic and tribological properties of h-BNC2/graphene, h-BNC2/h-BN and h-BNC2/h-BNC2 bilayers.
    Ansari N; Nazari F; Illas F
    Phys Chem Chem Phys; 2015 May; 17(19):12908-18. PubMed ID: 25909457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of diamane anchored with different groups.
    Ge L; Liu H; Wang J; Huang H; Cui Z; Huang Q; Fu Z; Lu Y
    Phys Chem Chem Phys; 2021 Jul; 23(26):14195-14204. PubMed ID: 34159999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.