These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36903737)

  • 1. Strong Electric Polarizability of Cone-Shell Quantum Structures for a Large Stark Shift, Tunable Long Exciton Lifetimes, and a Dot-to-Ring Transformation.
    Heyn C; Ranasinghe L; Deneke K; Alshaikh A; Duque CA; Hansen W
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GaAs Cone-Shell Quantum Dots in a Lateral Electric Field: Exciton Stark-Shift, Lifetime, and Fine-Structure Splitting.
    Alshaikh A; Blick RH; Heyn C
    Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-Enhanced Exciton Emission from GaAs Cone-Shell Quantum Dots.
    Heyn C; Ranasinghe L; Deneke K; Alshaikh A; Blick RH
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dot-Size Dependent Excitons in Droplet-Etched Cone-Shell GaAs Quantum Dots.
    Heyn C; Gräfenstein A; Pirard G; Ranasinghe L; Deneke K; Alshaikh A; Bester G; Hansen W
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures.
    Küster A; Heyn C; Ungeheuer A; Juska G; Tommaso Moroni S; Pelucchi E; Hansen W
    Nanoscale Res Lett; 2016 Dec; 11(1):282. PubMed ID: 27255902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cone-Shell Quantum Structures in Electric and Magnetic Fields as Switchable Traps for Photoexcited Charge Carriers.
    Heyn C; Ranasinghe L; Alshaikh A; Duque CA
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-dot Spectroscopy of GaAs Quantum Dots Fabricated by Filling of Self-assembled Nanoholes.
    Heyn Ch; Klingbeil M; Strelow Ch; Stemmann A; Mendach S; Hansen W
    Nanoscale Res Lett; 2010 Jul; 5(10):1633-6. PubMed ID: 21076707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-Dependent Exciton Dynamics in a Single GaAs Quantum Ring and a Quantum Dot.
    Kim H; Kim JS; Song JD
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large optical Stark shifts in single quantum dots coupled to core-shell GaAs/AlGaAs nanowires.
    Yu Y; Wei YM; Wang J; Li JH; Shang XJ; Ni HQ; Niu ZC; Wang XH; Yu SY
    Nanoscale; 2017 May; 9(17):5483-5488. PubMed ID: 28401237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertically stacked quantum dot pairs fabricated by nanohole filling.
    Sonnenberg D; Küster A; Graf A; Heyn Ch; Hansen W
    Nanotechnology; 2014 May; 25(21):215602. PubMed ID: 24784358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Properties of Conical Quantum Dot: Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence.
    Gavalajyan SP; Mantashian GA; Kharatyan GT; Sarkisyan HA; Mantashyan PA; Baskoutas S; Hayrapetyan DB
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stark Effect Spectroscopy of Mono- and Few-Layer MoS2.
    Klein J; Wierzbowski J; Regler A; Becker J; Heimbach F; Müller K; Kaniber M; Finley JJ
    Nano Lett; 2016 Mar; 16(3):1554-9. PubMed ID: 26845085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of polaron-transformed explicitly correlated full configuration interaction method for investigation of quantum-confined Stark effect in GaAs quantum dots.
    Blanton CJ; Brenon C; Chakraborty A
    J Chem Phys; 2013 Feb; 138(5):054114. PubMed ID: 23406105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the anomalous Stark effect in a thin disc-shaped quantum dot.
    Oukerroum A; Feddi E; Bailach JB; Martínez-Pastor J; Dujardin F; Assaid E
    J Phys Condens Matter; 2010 Sep; 22(37):375301. PubMed ID: 21403190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Confined Stark Effect in a GaAs/AlGaAs Nanowire Quantum Well Tube Device: Probing Exciton Localization.
    Badada BH; Shi T; Jackson HE; Smith LM; Zheng C; Etheridge J; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2015 Dec; 15(12):7847-52. PubMed ID: 26562619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppressed Out-of-Plane Polarizability of Free Excitons in Monolayer WSe
    Verzhbitskiy I; Vella D; Watanabe K; Taniguchi T; Eda G
    ACS Nano; 2019 Mar; 13(3):3218-3224. PubMed ID: 30768242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum-confined stark effect in the ensemble of phase-pure CdSe/CdS quantum dots.
    Zhang L; Lv B; Yang H; Xu R; Wang X; Xiao M; Cui Y; Zhang J
    Nanoscale; 2019 Jul; 11(26):12619-12625. PubMed ID: 31233067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical Tuning of Interlayer Exciton Gases in WSe
    Wang Z; Chiu YH; Honz K; Mak KF; Shan J
    Nano Lett; 2018 Jan; 18(1):137-143. PubMed ID: 29240440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields.
    Ma X; Bryant GW; Doty MF
    Phys Rev B; 2016; 93(24):. PubMed ID: 32118123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.