BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36903751)

  • 1. Tethered Bilayer Lipid Membrane Platform for Screening Triton X-100 Detergent Replacements by Electrochemical Impedance Spectroscopy.
    Tan SW; Gooran N; Lim HM; Yoon BK; Jackman JA
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supported Lipid Bilayer Platform for Characterizing the Membrane-Disruptive Behaviors of Triton X-100 and Potential Detergent Replacements.
    Gooran N; Yoon BK; Jackman JA
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the Biophysical Mechanisms of How Antiviral Detergents Disrupt Supported Lipid Membranes: Toward Replacing Triton X-100.
    Gooran N; Tan SW; Frey SL; Jackman JA
    Langmuir; 2024 Mar; 40(12):6524-6536. PubMed ID: 38478717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Evaluation of Antimicrobial Lipid Interactions with Tethered Lipid Bilayers by Electrochemical Impedance Spectroscopy.
    Tan SW; Jeon WY; Yoon BK; Jackman JA
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoarchitectonics-based model membrane platforms for probing membrane-disruptive interactions of odd-chain antimicrobial lipids.
    Yoon BK; Tan SW; Tan JYB; Jackman JA; Cho NJ
    Nano Converg; 2022 Nov; 9(1):48. PubMed ID: 36318349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of a Triton X-100 replacement for virus inactivation.
    Luo W; Hickman D; Keykhosravani M; Wilson J; Fink J; Huang L; Chen D; O'Donnell S
    Biotechnol Prog; 2020 Nov; 36(6):e3036. PubMed ID: 32533632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling Membrane-Disruptive Properties of Sodium Lauroyl Lactylate and Its Hydrolytic Products: A QCM-D and EIS Study.
    Gooran N; Tan SW; Yoon BK; Jackman JA
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-Disruptive Effects of Fatty Acid and Monoglyceride Mitigants on
    Tan SW; Yoon BK; Jackman JA
    Molecules; 2024 Jan; 29(1):. PubMed ID: 38202820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane resistance to Triton X-100 explored by real-time atomic force microscopy.
    Morandat S; El Kirat K
    Langmuir; 2006 Jun; 22(13):5786-91. PubMed ID: 16768509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detergent-Mediated Virus Inactivation in Biotechnological Matrices: More than Just CMC.
    Farcet JB; Karbiener M; Zelger L; Kindermann J; Kreil TR
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical Characterization of LTX-315 Anticancer Peptide Interactions with Model Membrane Platforms: Effect of Membrane Surface Charge.
    Koo DJ; Sut TN; Tan SW; Yoon BK; Jackman JA
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid shape determination of detergent solubilization in mixed-lipid liposomes.
    Clark ST; Arras MML; Sarles SA; Frymier PD
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110609. PubMed ID: 31806354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization.
    Caritá AC; Mattei B; Domingues CC; de Paula E; Riske KA
    Langmuir; 2017 Jul; 33(29):7312-7321. PubMed ID: 28474888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate.
    Paternostre MT; Roux M; Rigaud JL
    Biochemistry; 1988 Apr; 27(8):2668-77. PubMed ID: 2840945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomembrane solubilization mechanism by Triton X-100: a computational study of the three stage model.
    Pizzirusso A; De Nicola A; Sevink GJA; Correa A; Cascella M; Kawakatsu T; Rocco M; Zhao Y; Celino M; Milano G
    Phys Chem Chem Phys; 2017 Nov; 19(44):29780-29794. PubMed ID: 28956043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical impedance spectroscopy of tethered bilayer membranes.
    Valincius G; Meškauskas T; Ivanauskas F
    Langmuir; 2012 Jan; 28(1):977-90. PubMed ID: 22126190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of phosphatidylcholine bilayers with Triton X-100.
    Goñi FM; Urbaneja MA; Arrondo JL; Alonso A; Durrani AA; Chapman D
    Eur J Biochem; 1986 Nov; 160(3):659-65. PubMed ID: 3780729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane.
    Liu Y; Zhang Z; Zhang Q; Baker GL; Worden RM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):429-37. PubMed ID: 24060565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization of planar bilayers with detergent.
    Csúcs G; Ramsden JJ
    Biochim Biophys Acta; 1998 Mar; 1369(2):304-8. PubMed ID: 9518662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.