These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36903754)

  • 1. The Roles of Riblet and Superhydrophobic Surfaces in Energy Saving Using a Spatial Correlation Analysis.
    Liu C; Wang W; Hu X; Fang J; Liu F
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drag Reduction Technology of Water Flow on Microstructured Surfaces: A Novel Perspective from Vortex Distributions and Densities.
    Liu C; Wang W; Hu X; Liu F
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and optimization of shark-inspired riblet geometries for low drag applications.
    Martin S; Bhushan B
    J Colloid Interface Sci; 2016 Jul; 474():206-15. PubMed ID: 27131153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shark skin inspired low-drag microstructured surfaces in closed channel flow.
    Bixler GD; Bhushan B
    J Colloid Interface Sci; 2013 Mar; 393():384-96. PubMed ID: 23266029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid drag reduction by penguin-mimetic laser-ablated riblets with yaw angles.
    Saito R; Yamasaki T; Tanaka H
    Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35797974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the Yaw Angle on Air Drag Reduction for Various Riblet Surfaces.
    Zhou Z; Ou Z; Yan Z; Huang J; Lv X; He Y; Yuan W
    Langmuir; 2022 Dec; 38(50):15570-15578. PubMed ID: 36480432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drag reduction by riblets.
    García-Mayoral R; Jiménez J
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1412-27. PubMed ID: 21382822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary Assessment of Asymmetric Triangular Riblet Microstructures for Drag Deduction and Fouling Resistance: Numerical Modeling, Fabrication, and Performance Evaluation.
    Hamilton BW; Tutunea-Fatan RO; Bordatchev EV
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review.
    Dean B; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4775-806. PubMed ID: 20855320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of the effect of air layer on drag reduction in channel flow over a superhydrophobic surface.
    Nguyen HT; Lee SW; Ryu J; Kim M; Yoon J; Chang K
    Sci Rep; 2024 May; 14(1):12053. PubMed ID: 38802500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship Between Skin Scales and the Main Flow Field Around the Shortfin Mako Shark
    Zhang C; Gao M; Liu G; Zheng Y; Xue C; Shen C
    Front Bioeng Biotechnol; 2022; 10():742437. PubMed ID: 35547174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drag-reducing riblets with fouling-release properties: development and testing.
    Benschop HOG; Guerin AJ; Brinkmann A; Dale ML; Finnie AA; Breugem WP; Clare AS; Stübing D; Price C; Reynolds KJ
    Biofouling; 2018 May; 34(5):532-544. PubMed ID: 29806493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Stable Drag Reduction of Controllable Laser-Patterned Superwetting Surfaces Containing Bioinspired Micro/Nanostructured Arrays.
    Rong W; Zhang H; Mao Z; Chen L; Liu X
    ACS Omega; 2022 Jan; 7(2):2049-2063. PubMed ID: 35071893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multistage Gradient Bioinspired Riblets for Synergistic Drag Reduction and Efficient Antifouling.
    Cui X; Chen D; Chen H
    ACS Omega; 2023 Mar; 8(9):8569-8581. PubMed ID: 36910977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic Surfaces with Excellent Ice Prevention and Drag Reduction Properties Inspired by Iridaceae Leaf.
    Zhou W; Feng X; Wang Z; Zhu D; Chu J; Zhu X; Hu Y; Tian G
    Langmuir; 2024 Apr; 40(13):7192-7204. PubMed ID: 38503714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired surfaces with special micro-structures and wettability for drag reduction: which surface design will be a better choice?
    Zhu Y; Yang F; Guo Z
    Nanoscale; 2021 Feb; 13(6):3463-3482. PubMed ID: 33566874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.
    Martin S; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer.
    Zhang Y; Zhang Z; Yang J; Yue Y; Zhang H
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.