These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36903775)

  • 1. FDTD Simulations for Rhodium and Platinum Nanoparticles for UV Plasmonics.
    Zyubin AY; Kon II; Poltorabatko DA; Samusev IG
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FTDT simulations of local plasmonic fields for theranostic core-shell gold-based nanoparticles.
    Kon I; Zyubin A; Samusev I
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):1398-1403. PubMed ID: 32902425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical FDTD-based simulations and Raman experiments of femtosecond LIPSS.
    Zyubin A; Kon I; Tcibulnikova A; Matveeva K; Khankaev A; Myslitskaya N; Lipnevich L; Demishkevich E; Medvedskaya P; Samusev I; Bryukhanov V; Demin M
    Opt Express; 2021 Feb; 29(3):4547-4558. PubMed ID: 33771030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FDTD Simulations of Shell Scattering in Au@SiO
    Kon I; Zyubin A; Samusev I
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two orders of magnitude extra SERS enhancement on silver nanoparticle-based substrate induced by laser irradiation in nitrogen ambient.
    Jin C; Chen J; Du Z; Liu C; Liu F; Hu J; Han M
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120372. PubMed ID: 34530198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection.
    Gomez-Cruz J; Bdour Y; Stamplecoskie K; Escobedo C
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes.
    Wu J; Qin K; Yuan D; Tan J; Qin L; Zhang X; Wei H
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12954-12959. PubMed ID: 29577720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodium nanocubes and nanotripods for highly sensitive ultraviolet surface-enhanced Raman spectroscopy.
    Das R; Soni RK
    Analyst; 2018 May; 143(10):2310-2322. PubMed ID: 29687108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules.
    Sun G; Fu C; Dong M; Jin G; Song Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 269():120743. PubMed ID: 34942414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile fabrication of 2D hetero core-satellites patterned Ag nanoparticle arrays with tunable plasmonic bands for SERS detection.
    Cai Y; Huang L; Wang H; Dong W; Zhang Y; Zhang W; Liu Y; Li G; Shang F; Tong H
    Nanotechnology; 2019 Mar; 30(12):125701. PubMed ID: 30572325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering.
    Hossain MK; Drmosh QA
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120141. PubMed ID: 34280795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.
    Chaffin E; O'Connor RT; Barr J; Huang X; Wang Y
    J Chem Phys; 2016 Aug; 145(5):054706. PubMed ID: 27497571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver nanoparticles, nanoneedles and nanorings: impact of electromagnetic near-field on surface-enhanced Raman scattering.
    Hossain MK; Drmosh QA; Arifuzzaman M
    Phys Chem Chem Phys; 2022 Apr; 24(15):8787-8799. PubMed ID: 35352733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies.
    Luo X; Zhao X; Wallace GQ; Brunet MH; Wilkinson KJ; Wu P; Cai C; Bazuin CG; Masson JF
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6545-6556. PubMed ID: 33522805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for describing the electromagnetic properties of silver and gold nanoparticles.
    Zhao J; Pinchuk AO; McMahon JM; Li S; Ausman LK; Atkinson AL; Schatz GC
    Acc Chem Res; 2008 Dec; 41(12):1710-20. PubMed ID: 18712883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing.
    Vo-Dinh T; Dhawan A; Norton SJ; Khoury CG; Wang HN; Misra V; Gerhold MD
    J Phys Chem C Nanomater Interfaces; 2010 Apr; 114(16):7480-7488. PubMed ID: 24839505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.
    Dhawan A; Norton SJ; Gerhold MD; Vo-Dinh T
    Opt Express; 2009 Jun; 17(12):9688-703. PubMed ID: 19506618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes.
    Ren B; Lin XF; Yang ZL; Liu GK; Aroca RF; Mao BW; Tian ZQ
    J Am Chem Soc; 2003 Aug; 125(32):9598-9. PubMed ID: 12904020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of Ag, Au, Cu, and Pt nanostructures on surfaces by micropatterned laser-image formations.
    Pacheco-Londono LC; Aparicio-Bolaño J; Primera-Pedrozo OM; Hernandez-Rivera SP
    Appl Opt; 2011 Jul; 50(21):4161-9. PubMed ID: 21772403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.