These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36903878)

  • 21. Hairy root transformation system as a tool for CRISPR/Cas9-directed genome editing in oilseed rape (
    Jedličková V; Mácová K; Štefková M; Butula J; Staveníková J; Sedláček M; Robert HS
    Front Plant Sci; 2022; 13():919290. PubMed ID: 35991410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata.
    Kirchner TW; Niehaus M; Debener T; Schenk MK; Herde M
    PLoS One; 2017; 12(9):e0185429. PubMed ID: 28937992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted mutagenesis in soybean using the CRISPR-Cas9 system.
    Sun X; Hu Z; Chen R; Jiang Q; Song G; Zhang H; Xi Y
    Sci Rep; 2015 May; 5():10342. PubMed ID: 26022141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly efficient
    Zhou L; Wang Y; Wang P; Wang C; Wang J; Wang X; Cheng H
    Front Plant Sci; 2022; 13():1059404. PubMed ID: 36643290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation.
    Shu H; Luo Z; Peng Z; Wang J
    BMC Plant Biol; 2020 Sep; 20(1):417. PubMed ID: 32894045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme.
    Michno JM; Wang X; Liu J; Curtin SJ; Kono TJ; Stupar RM
    GM Crops Food; 2015; 6(4):243-52. PubMed ID: 26479970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba.
    Triozzi PM; Schmidt HW; Dervinis C; Kirst M; Conde D
    Tree Physiol; 2021 Nov; 41(11):2216-2227. PubMed ID: 33960379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9-Based Gene Editing Using Egg Cell-Specific Promoters in Arabidopsis and Soybean.
    Zheng N; Li T; Dittman JD; Su J; Li R; Gassmann W; Peng D; Whitham SA; Liu S; Yang B
    Front Plant Sci; 2020; 11():800. PubMed ID: 32612620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing.
    Luo Y; Na R; Nowak JS; Qiu Y; Lu QS; Yang C; Marsolais F; Tian L
    BMC Plant Biol; 2021 Sep; 21(1):419. PubMed ID: 34517842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of CRISPR/Cas9 System for Efficient Gene Editing in Peanut.
    Neelakandan AK; Wright DA; Traore SM; Ma X; Subedi B; Veeramasu S; Spalding MH; He G
    Plants (Basel); 2022 May; 11(10):. PubMed ID: 35631786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean.
    Cheng Q; Dong L; Su T; Li T; Gan Z; Nan H; Lu S; Fang C; Kong L; Li H; Hou Z; Kou K; Tang Y; Lin X; Zhao X; Chen L; Liu B; Kong F
    BMC Plant Biol; 2019 Dec; 19(1):562. PubMed ID: 31852439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha.
    Sugano SS; Nishihama R
    Methods Mol Biol; 2018; 1830():109-126. PubMed ID: 30043367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soybean Hairy Root Transformation: A Rapid and Highly Efficient Method.
    Song J; Tóth K; Montes-Luz B; Stacey G
    Curr Protoc; 2021 Jul; 1(7):e195. PubMed ID: 34288607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of an Agrobacterium-delivered codon-optimized CRISPR/Cas9 system for chickpea genome editing.
    Gupta SK; Vishwakarma NK; Malakar P; Vanspati P; Sharma NK; Chattopadhyay D
    Protoplasma; 2023 Sep; 260(5):1437-1451. PubMed ID: 37131068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluate the guide RNA effectiveness
    Wang Z; Shea Z; Li Q; Wang K; Mills K; Zhang B; Zhao B
    Front Plant Sci; 2023; 14():1111683. PubMed ID: 36890894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/LbCas12a-Mediated Genome Editing in Soybean.
    Liang D; Liu Y; Li C; Wen Q; Xu J; Geng L; Liu C; Jin H; Gao Y; Zhong H; Dawson J; Tian B; Barco B; Su X; Dong S; Li C; Elumalai S; Que Q; Jepson I; Shi L
    Methods Mol Biol; 2023; 2653():39-52. PubMed ID: 36995618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages.
    Alok A; Chauhan H; Upadhyay SK; Pandey A; Kumar J; Singh K
    Life (Basel); 2021 Sep; 11(10):. PubMed ID: 34685392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. gRNA validation for wheat genome editing with the CRISPR-Cas9 system.
    Arndell T; Sharma N; Langridge P; Baumann U; Watson-Haigh NS; Whitford R
    BMC Biotechnol; 2019 Oct; 19(1):71. PubMed ID: 31684940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.