BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36903926)

  • 1. Exploring the Biocontrol Efficacy of
    Go WZ; Chin KL; H'ng PS; Wong MY; Lee CL; Khoo PS
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903926
    [No Abstract]   [Full Text] [Related]  

  • 2. Virulence of
    Go WZ; Chin KL; H'ng PS; Wong MY; Luqman CA; Surendran A; Tan GH; Lee CL; Khoo PS; Kong WJ
    Plants (Basel); 2021 Oct; 10(10):. PubMed ID: 34685932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of volatile compounds acquired from Muscodor heveae against white root rot disease in rubber trees (Hevea brasiliensis Müll. Arg.) and relevant allelopathy effects.
    Siri-Udom S; Suwannarach N; Lumyong S
    Fungal Biol; 2017; 121(6-7):573-581. PubMed ID: 28606352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel rubber tree PR-10 protein involved in host-defense response against the white root rot fungus Rigidoporus microporus.
    Longsaward R; Pengnoo A; Kongsawadworakul P; Viboonjun U
    BMC Plant Biol; 2023 Mar; 23(1):157. PubMed ID: 36944945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular phylogeny of Rigidoporus microporus isolates associated with white rot disease of rubber trees (Hevea brasiliensis).
    Oghenekaro AO; Miettinen O; Omorusi VI; Evueh GA; Farid MA; Gazis R; Asiegbu FO
    Fungal Biol; 2014; 118(5-6):495-506. PubMed ID: 24863478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Analysis of Mycelial Proteins and Metabolites From Rigidoporus Microporus During In Vitro Interaction With Hevea Brasiliensis.
    Fisol AFBC; Saidi NB; Al-Obaidi JR; Lamasudin DU; Atan S; Razali N; Sajari R; Rahmad N; Hussin SNIS; Mr NH
    Microb Ecol; 2022 Feb; 83(2):363-379. PubMed ID: 33890145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo transcriptomic assembly and profiling of Rigidoporus microporus during saprotrophic growth on rubber wood.
    Oghenekaro AO; Raffaello T; Kovalchuk A; Asiegbu FO
    BMC Genomics; 2016 Mar; 17():234. PubMed ID: 26980399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and Expression Analysis of HbPR-1b and HbPR-3 in Hevea brasiliensis During Inoculation with Rigidoporus microporus.
    Woraathasin N; Nakkanong K; Nualsri C
    Pak J Biol Sci; 2017; 20(5):233-243. PubMed ID: 29023035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro and in Planta Evaluation of
    Chou H; Xiao YT; Tsai JN; Li TT; Wu HY; Liu LD; Tzeng DS; Chung CL
    Plant Dis; 2019 Nov; 103(11):2733-2741. PubMed ID: 31483183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocontrol Potential of
    Ma Y; Li Y; Yang S; Li Y; Zhu Z
    J Fungi (Basel); 2023 Sep; 9(9):. PubMed ID: 37755043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locally Isolated
    Chan ME; Tan JY; Lee YY; Lee D; Fong YK; Mutwil M; Wong JY; Hong Y
    J Fungi (Basel); 2023 Jun; 9(6):. PubMed ID: 37367611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L.
    Saxena A; Raghuwanshi R; Singh HB
    J Basic Microbiol; 2015 Feb; 55(2):195-206. PubMed ID: 25205162
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Intana W; Kheawleng S; Sunpapao A
    J Fungi (Basel); 2021 Jan; 7(1):. PubMed ID: 33445575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome sequencing of Rigidoporus microporus provides insights on genes important for wood decay, latex tolerance and interspecific fungal interactions.
    Oghenekaro AO; Kovalchuk A; Raffaello T; Camarero S; Gressler M; Henrissat B; Lee J; Liu M; Martínez AT; Miettinen O; Mihaltcheva S; Pangilinan J; Ren F; Riley R; Ruiz-Dueñas FJ; Serrano A; Thon MR; Wen Z; Zeng Z; Barry K; Grigoriev IV; Martin F; Asiegbu FO
    Sci Rep; 2020 Mar; 10(1):5250. PubMed ID: 32251355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological control of Rigidoporus lignosus in Hevea brasiliensis in Nigeria.
    Ogbebor NO; Adekunle AT; Eghafona ON; Ogboghodo AI
    Fungal Biol; 2015 Jan; 119(1):1-6. PubMed ID: 25601145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic activity of Trichoderma asperellum against Fusarium species, chemical profile and their efficacy for management of Fusarium-root rot disease in dry bean.
    Elshahawy IE; Marrez DA
    Pest Manag Sci; 2024 Mar; 80(3):1153-1167. PubMed ID: 37874198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endophytes from Wild Rubber Trees as Antagonists of the Pathogen
    Pujade-Renaud V; Déon M; Gazis R; Ribeiro S; Dessailly F; Granet F; Chaverri P
    Phytopathology; 2019 Nov; 109(11):1888-1899. PubMed ID: 31290729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endophytic
    Andrade-Hoyos P; Silva-Rojas HV; Romero-Arenas O
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32957543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis).
    Havanapan PO; Bourchookarn A; Ketterman AJ; Krittanai C
    J Proteomics; 2016 Jan; 131():82-92. PubMed ID: 26477389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet.
    Nandini B; Puttaswamy H; Saini RK; Prakash HS; Geetha N
    Sci Rep; 2021 May; 11(1):9517. PubMed ID: 33947949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.