These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36904573)

  • 21. Two-electrode Voltage-clamp Recordings in
    Wang C; Zhang J; Schroeder JI
    Bio Protoc; 2017 Jan; 7(2):. PubMed ID: 28516122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of Xenopus oocytes to measure ionic selectivity of pore-forming peptides and ion channels.
    Cens T; Charnet P
    Methods Mol Biol; 2007; 403():287-302. PubMed ID: 18828001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements.
    Cohen A; Zilberberg N
    J Neurosci Methods; 2006 May; 153(1):62-70. PubMed ID: 16293314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated microsystem for non-invasive electrophysiological measurements on Xenopus oocytes.
    Dahan E; Bize V; Lehnert T; Horisberger JD; Gijs MA
    Biosens Bioelectron; 2007 Jun; 22(12):3196-202. PubMed ID: 17416513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biophysical approach to determine the subunit stoichiometry of the epithelial sodium channel using the Xenopus laevis oocyte expression system.
    Kosari F; Sheng S; Kleyman TR
    Methods Mol Biol; 2006; 337():53-63. PubMed ID: 16929938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of inositol trisphosphates and inositol tetrakisphosphate on Ca2+ release and Cl- current pattern in the Xenopus laevis oocyte.
    Ferguson JE; Han JK; Kao JP; Nuccitelli R
    Exp Cell Res; 1991 Feb; 192(2):352-65. PubMed ID: 1846334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression and characterization of the bacterial mechanosensitive channel MscS in Xenopus laevis oocytes.
    Maksaev G; Haswell ES
    J Gen Physiol; 2011 Dec; 138(6):641-9. PubMed ID: 22084416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion Channels as Reporters of Membrane Receptor Function: Automated Analysis in Xenopus Oocytes.
    Vivaudou M; Todorov Z; Reyes-Mejia GC; Moreau C
    Methods Mol Biol; 2017; 1635():283-301. PubMed ID: 28755375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glass-funnel technique for the recording of membrane currents and intracellular perfusion of Xenopus oocytes.
    Shuba YM; Naidenov VG; Morad M
    Pflugers Arch; 1996 Jul; 432(3):562-70. PubMed ID: 8766018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-electrode voltage clamp of Xenopus oocytes under high hydrostatic pressure.
    Schmalwasser H; Neef A; Elliott AA; Heinemann SH
    J Neurosci Methods; 1998 Jun; 81(1-2):1-7. PubMed ID: 9696303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels.
    Cristofori-Armstrong B; Soh MS; Talwar S; Brown DL; Griffin JD; Dekan Z; Stow JL; King GF; Lynch JW; Rash LD
    Sci Rep; 2015 Oct; 5():14763. PubMed ID: 26440210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry.
    Rudokas MW; Varga Z; Schubert AR; Asaro AB; Silva JR
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24637712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Established Protocols for cRNA Expression and Voltage-Clamp Characterization of the P2X7 Receptor in Xenopus laevis Oocytes.
    Schmalzing G; Markwardt F
    Methods Mol Biol; 2022; 2510():157-192. PubMed ID: 35776325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional assay of mammalian and insect olfactory receptors using Xenopus oocytes.
    Luetje CW; Nichols AS; Castro A; Sherman BL
    Methods Mol Biol; 2013; 1003():187-202. PubMed ID: 23585043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating the longevity of surgically extracted Xenopus laevis oocytes for the study of nematode ligand-gated ion channels.
    Abdelmassih SA; Cochrane E; Forrester SG
    Invert Neurosci; 2017 Nov; 18(1):1. PubMed ID: 29185074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Caffeine suppresses chloride current fluctuations in calcium-overloaded Xenopus laevis oocytes.
    Poledna J; Packová V
    Physiol Res; 1994; 43(4):253-6. PubMed ID: 7841172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane-pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes.
    Gil Z; Magleby KL; Silberberg SD
    Biophys J; 1999 Jun; 76(6):3118-27. PubMed ID: 10354436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of epithelial Na channels in Xenopus oocytes.
    Palmer LG; Corthesy-Theulaz I; Gaeggeler HP; Kraehenbuhl JP; Rossier B
    J Gen Physiol; 1990 Jul; 96(1):23-46. PubMed ID: 2170563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression, purification, and projection structure by single particle electron microscopy of functional human TRPM4 heterologously expressed in Xenopus laevis oocytes.
    Clémençon B; Fine M; Lüscher B; Baumann MU; Surbek DV; Abriel H; Hediger MA
    Protein Expr Purif; 2014 Mar; 95():169-76. PubMed ID: 24333049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The plasma membrane of Xenopus laevis oocytes contains voltage-dependent anion-selective porin channels.
    Steinacker P; Awni LA; Becker S; Cole T; Reymann S; Hesse D; Kratzin HD; Morris-Wortmann C; Schwarzer C; Thinnes FP; Hilschmann N
    Int J Biochem Cell Biol; 2000 Feb; 32(2):225-34. PubMed ID: 10687956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.