These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A federated learning method for real-time emotion state classification from multi-modal streaming. Nandi A; Xhafa F Methods; 2022 Aug; 204():340-347. PubMed ID: 35314343 [TBL] [Abstract][Full Text] [Related]
6. A Wearable In-Ear EEG Device for Emotion Monitoring. Athavipach C; Pan-Ngum S; Israsena P Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533329 [TBL] [Abstract][Full Text] [Related]
7. Wearable-based human flow experience recognition enhanced by transfer learning methods using emotion data. Irshad MT; Li F; Nisar MA; Huang X; Buss M; Kloep L; Peifer C; Kozusznik B; Pollak A; Pyszka A; Flak O; Grzegorzek M Comput Biol Med; 2023 Nov; 166():107489. PubMed ID: 37769461 [TBL] [Abstract][Full Text] [Related]
8. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning. Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579 [TBL] [Abstract][Full Text] [Related]
9. Decoding auditory-evoked response in affective states using wearable around-ear EEG system. Choi J; Kaongoen N; Choi H; Kim M; Kim BH; Jo S Biomed Phys Eng Express; 2023 Aug; 9(5):. PubMed ID: 37591224 [No Abstract] [Full Text] [Related]
10. A Comparative Study of Arousal and Valence Dimensional Variations for Emotion Recognition Using Peripheral Physiological Signals Acquired from Wearable Sensors Alskafi FA; Khandoker AH; Jelinek HF Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1104-1107. PubMed ID: 34891480 [TBL] [Abstract][Full Text] [Related]
11. Decoding the neural signatures of valence and arousal from portable EEG headset. Garg N; Garg R; Anand A; Baths V Front Hum Neurosci; 2022; 16():1051463. PubMed ID: 36561835 [TBL] [Abstract][Full Text] [Related]
12. Insights from EEG analysis of evoked memory recalls using deep learning for emotion charting. Dar MN; Akram MU; Subhani AR; Khawaja SG; Reyes-Aldasoro CC; Gul S Sci Rep; 2024 Jul; 14(1):17080. PubMed ID: 39048599 [TBL] [Abstract][Full Text] [Related]
14. CorrNet: Fine-Grained Emotion Recognition for Video Watching Using Wearable Physiological Sensors. Zhang T; El Ali A; Wang C; Hanjalic A; Cesar P Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374281 [TBL] [Abstract][Full Text] [Related]
15. Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition. Xefteris VR; Tsanousa A; Georgakopoulou N; Diplaris S; Vrochidis S; Kompatsiaris I Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365896 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition from Multichannel EEG Recordings. Yuvaraj R; Thagavel P; Thomas J; Fogarty J; Ali F Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679710 [TBL] [Abstract][Full Text] [Related]
19. Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Marín-Morales J; Higuera-Trujillo JL; Greco A; Guixeres J; Llinares C; Scilingo EP; Alcañiz M; Valenza G Sci Rep; 2018 Sep; 8(1):13657. PubMed ID: 30209261 [TBL] [Abstract][Full Text] [Related]
20. Learning-based classification of valence emotion from electroencephalography. Ramzan M; Dawn S Int J Neurosci; 2019 Nov; 129(11):1085-1093. PubMed ID: 31215829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]