These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36904597)

  • 1. Data-Driven Robotic Manipulation of Cloth-like Deformable Objects: The Present, Challenges and Future Prospects.
    Kadi HA; Terzić K
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review.
    Nocentini O; Kim J; Bashir ZM; Cavallo F
    J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of Learning-Based Robotic Manipulation in Cluttered Environments.
    Mohammed MQ; Kwek LC; Chua SC; Al-Dhaqm A; Nahavandi S; Eisa TAE; Miskon MF; Al-Mhiqani MN; Ali A; Abaker M; Alandoli EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloth manipulation planning on basis of mesh representations with incomplete domain knowledge and voxel-to-mesh estimation.
    Arnold S; Tanaka D; Yamazaki K
    Front Neurorobot; 2022; 16():1045747. PubMed ID: 36687204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grasping learning, optimization, and knowledge transfer in the robotics field.
    Pozzi L; Gandolla M; Pura F; Maccarini M; Pedrocchi A; Braghin F; Piga D; Roveda L
    Sci Rep; 2022 Mar; 12(1):4481. PubMed ID: 35296691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Deformable Objects for Robotic Manipulation: A Tutorial and Review.
    Arriola-Rios VE; Guler P; Ficuciello F; Kragic D; Siciliano B; Wyatt JL
    Front Robot AI; 2020; 7():82. PubMed ID: 33501249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling, learning, perception, and control methods for deformable object manipulation.
    Yin H; Varava A; Kragic D
    Sci Robot; 2021 May; 6(54):. PubMed ID: 34043538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Self-Organizing and Graph Neural Networks for Modeling Deformable Objects in Robotic Manipulation.
    Valencia AJ; Payeur P
    Front Robot AI; 2020; 7():600584. PubMed ID: 33501360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and Flexible Multi-Step Cloth Manipulation Planning Using an Encode-Manipulate-Decode Network (EM*D Net).
    Arnold S; Yamazaki K
    Front Neurorobot; 2019; 13():22. PubMed ID: 31214008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation.
    Han D; Mulyana B; Stankovic V; Cheng S
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Cloth Manipulation Considering Variable Stiffness and Material Change Using Deep Predictive Model With Parametric Bias.
    Kawaharazuka K; Miki A; Bando M; Okada K; Inaba M
    Front Neurorobot; 2022; 16():890695. PubMed ID: 35677831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Contour-following via Haptic Perception and Reinforcement Learning.
    Hellman RB; Tekin C; van der Schaar M; Santos VJ
    IEEE Trans Haptics; 2018; 11(1):61-72. PubMed ID: 28922126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance measures to benchmark the grasping, manipulation, and assembly of deformable objects typical to manufacturing applications.
    Kimble K; Albrecht J; Zimmerman M; Falco J
    Front Robot AI; 2022; 9():999348. PubMed ID: 36478670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning Mobile Manipulation through Deep Reinforcement Learning.
    Wang C; Zhang Q; Tian Q; Li S; Wang X; Lane D; Petillot Y; Wang S
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian Disturbance Injection: Robust imitation learning of flexible policies for robot manipulation.
    Oh H; Sasaki H; Michael B; Matsubara T
    Neural Netw; 2023 Jan; 158():42-58. PubMed ID: 36442373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image-based collision detection for deformable cloth models.
    Baciu G; Wong WS
    IEEE Trans Vis Comput Graph; 2004; 10(6):649-63. PubMed ID: 15527047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piezo robotic hand for motion manipulation from micro to macro.
    Zhang S; Liu Y; Deng J; Gao X; Li J; Wang W; Xun M; Ma X; Chang Q; Liu J; Chen W; Zhao J
    Nat Commun; 2023 Jan; 14(1):500. PubMed ID: 36717566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning.
    Hua J; Zeng L; Li G; Ju Z
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system.
    Mizanoor Rahman SM; Ikeura R
    Robotics Biomim; 2018; 5(1):7. PubMed ID: 30524934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular Piezoresistive Smart Textile for State Estimation of Cloths.
    Proesmans R; Verleysen A; Vleugels R; Veske P; De Gusseme VL; Wyffels F
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.