These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. ColoriSens: An open-source and low-cost portable color sensor board for microfluidic integration with wireless communication and fluorescence detection. Zhang Y; Tseng TM; Schlichtmann U HardwareX; 2022 Apr; 11():e00312. PubMed ID: 35572858 [TBL] [Abstract][Full Text] [Related]
23. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. Yuan Y; Jia H; Xu D; Wang J Sci Total Environ; 2023 Jan; 857(Pt 2):159563. PubMed ID: 36265627 [TBL] [Abstract][Full Text] [Related]
24. Integration of Microfluidic Chip and Probe with a Dual Pump System for Measurement of Single Cells Transient Response. Du X; Kaneko S; Maruyama H; Sugiura H; Tsujii M; Uozumi N; Arai F Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374795 [TBL] [Abstract][Full Text] [Related]
25. A Portable 'Plug-and-Play' Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications. Kumar R; Nguyen H; Rente B; Tan C; Sun T; Grattan KTV Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014146 [TBL] [Abstract][Full Text] [Related]
26. Wearable Microfluidic Sweat Chip for Detection of Sweat Glucose and pH in Long-Distance Running Exercise. Liu D; Liu Z; Feng S; Gao Z; Chen R; Cai G; Bian S Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831923 [TBL] [Abstract][Full Text] [Related]
27. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review. Liao Z; Zhang Y; Li Y; Miao Y; Gao S; Lin F; Deng Y; Geng L Biosens Bioelectron; 2019 Feb; 126():697-706. PubMed ID: 30544083 [TBL] [Abstract][Full Text] [Related]
28. Optical sensing systems for microfluidic devices: a review. Kuswandi B; Nuriman ; Huskens J; Verboom W Anal Chim Acta; 2007 Oct; 601(2):141-55. PubMed ID: 17920386 [TBL] [Abstract][Full Text] [Related]
29. A microfluidic long-period fiber grating sensor platform for chloride ion concentration measurement. Wang JN Sensors (Basel); 2011; 11(9):8550-68. PubMed ID: 22164091 [TBL] [Abstract][Full Text] [Related]
30. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. Mi F; Hu C; Wang Y; Wang L; Peng F; Geng P; Guan M Anal Bioanal Chem; 2022 Apr; 414(9):2883-2902. PubMed ID: 35064302 [TBL] [Abstract][Full Text] [Related]
31. Recent advances in sensor-integrated brain-on-a-chip devices for real-time brain monitoring. Zhao C; Wang Z; Tang X; Qin J; Jiang Z Colloids Surf B Biointerfaces; 2023 Sep; 229():113431. PubMed ID: 37473652 [TBL] [Abstract][Full Text] [Related]
32. Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization. Kojic SP; Stojanovic GM; Radonic V Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974880 [TBL] [Abstract][Full Text] [Related]
33. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers. Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367 [TBL] [Abstract][Full Text] [Related]
34. An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors. Hoera C; Ohla S; Shu Z; Beckert E; Nagl S; Belder D Anal Bioanal Chem; 2015 Jan; 407(2):387-96. PubMed ID: 25377779 [TBL] [Abstract][Full Text] [Related]
35. Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism. Zhang Y; Tseng TM; Schlichtmann U Sci Rep; 2021 Sep; 11(1):19189. PubMed ID: 34584118 [TBL] [Abstract][Full Text] [Related]
38. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development. Li Z; Hui J; Yang P; Mao H Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735518 [TBL] [Abstract][Full Text] [Related]
39. Ultrasensitive Nanophotonic Random Spectrometer with Microfluidic Channels as a Sensor for Biological Applications. Kuzin A; Fradkin I; Chernyshev V; Kovalyuk V; An P; Golikov A; Florya I; Gippius N; Gorin D; Goltsman G Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615990 [TBL] [Abstract][Full Text] [Related]
40. Various on-chip sensors with microfluidics for biological applications. Lee H; Xu L; Koh D; Nyayapathi N; Oh KW Sensors (Basel); 2014 Sep; 14(9):17008-36. PubMed ID: 25222033 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]