BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36904683)

  • 1. A Sparse Representation Classification Scheme for the Recognition of Affective and Cognitive Brain Processes in Neuromarketing.
    Oikonomou VP; Georgiadis K; Kalaganis F; Nikolopoulos S; Kompatsiaris I
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
    Miao M; Wang A; Liu F
    Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse Bayesian Classification of EEG for Brain-Computer Interface.
    Zhang Y; Zhou G; Jin J; Zhao Q; Wang X; Cichocki A
    IEEE Trans Neural Netw Learn Syst; 2016 Nov; 27(11):2256-2267. PubMed ID: 26415189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse Kernel Machines for motor imagery EEG classification.
    Oikonomou VP; Nikolopoulos S; Petrantonakis P; Kompatsiaris I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():207-210. PubMed ID: 30440374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate emotion recognition using Bayesian model based EEG sources as dynamic graph convolutional neural network nodes.
    Asadzadeh S; Yousefi Rezaii T; Beheshti S; Meshgini S
    Sci Rep; 2022 Jun; 12(1):10282. PubMed ID: 35717542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis.
    Fu R; Han M; Tian Y; Shi P
    J Neurosci Methods; 2020 Sep; 343():108833. PubMed ID: 32619588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.
    Shin Y; Lee S; Ahn M; Cho H; Jun SC; Lee HN
    Comput Biol Med; 2015 Nov; 66():29-38. PubMed ID: 26378500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epileptic EEG classification based on kernel sparse representation.
    Yuan Q; Zhou W; Yuan S; Li X; Wang J; Jia G
    Int J Neural Syst; 2014 Jun; 24(4):1450015. PubMed ID: 24694170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification.
    Zhang Y; Wang Y; Jin J; Wang X
    Int J Neural Syst; 2017 Mar; 27(2):1650032. PubMed ID: 27377661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Adaptive EEG Classification Algorithm Based on CSSD and ELM_Kernel for Small Training Samples.
    Wang L; Lan Z; Wang Q; Bai X; Ma F
    J Healthc Eng; 2022; 2022():4509612. PubMed ID: 36619242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.
    Iacoviello D; Petracca A; Spezialetti M; Placidi G
    Comput Methods Programs Biomed; 2015 Dec; 122(3):293-303. PubMed ID: 26358282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.
    Miao M; Zeng H; Wang A; Zhao C; Liu F
    J Neurosci Methods; 2017 Feb; 278():13-24. PubMed ID: 28012854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature Selection Using Extreme Gradient Boosting Bayesian Optimization to upgrade the Classification Performance of Motor Imagery signals for BCI.
    Thenmozhi T; Helen R
    J Neurosci Methods; 2022 Jan; 366():109425. PubMed ID: 34838951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Quasi-probabilistic distribution model for EEG Signal classification by using 2-D signal representation.
    Murat Yilmaz C; Kose C; Hatipoglu B
    Comput Methods Programs Biomed; 2018 Aug; 162():187-196. PubMed ID: 29903485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intelligent neuromarketing system for predicting consumers' future choice from electroencephalography signals.
    Mashrur FR; Rahman KM; Miya MTI; Vaidyanathan R; Anwar SF; Sarker F; Mamun KA
    Physiol Behav; 2022 Sep; 253():113847. PubMed ID: 35594931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive power projection method for accumulative EEG classification.
    Li CY; Liu R; Wang YY; Wang YX; Li X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7052-5. PubMed ID: 24111369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals.
    Zhang Z; Jung TP; Makeig S; Pi Z; Rao BD
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1186-97. PubMed ID: 24801887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.