These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36904684)

  • 1. An Adaptive Traffic-Flow Management System with a Cooperative Transitional Maneuver for Vehicular Platoons.
    Hota L; Nayak BP; Sahoo B; Chong PHJ; Kumar A
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decentralized Platoon Join-in-Middle Protocol Considering Communication Delay for Connected and Automated Vehicle.
    Lee G; Jung JI
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platoon Merging Approach Based on Hybrid Trajectory Planning and CACC Strategies.
    Hidalgo C; Lattarulo R; Flores C; Pérez Rastelli J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control Architecture for Connected Vehicle Platoons: From Sensor Data to Controller Design Using Vehicle-to-Everything Communication.
    Lazar RG; Pauca O; Maxim A; Caruntu CF
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37688028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Collaborative Merging Method for Connected and Automated Vehicle Platoons in a Freeway Merging Area with Considerations for Safety and Efficiency.
    Gao H; Cen Y; Liu B; Song X; Liu H; Liu J
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal traffic conflict analysis of autonomous and traditional vehicle platoons in field tests via surrogate safety measures.
    Das T; Shoaib Samandar M; Rouphail N
    Accid Anal Prev; 2022 Nov; 177():106822. PubMed ID: 36103759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Time-Delay Feedback Control of Vehicular CACC Systems with Uncertain Dynamics.
    Song X; Chen L; Wang K; He D
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement Learning-Based Approach for Minimizing Energy Loss of Driving Platoon Decisions.
    Gu Z; Liu Z; Wang Q; Mao Q; Shuai Z; Ma Z
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal safety evaluation of connected vehicles' platooning on expressways.
    Rahman MS; Abdel-Aty M
    Accid Anal Prev; 2018 Aug; 117():381-391. PubMed ID: 29275900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and analyzing self-resistance of connected automated vehicular platoons under different cyberattack injection modes.
    Luo D; Wang J; Wang Y; Dong J
    Accid Anal Prev; 2024 Apr; 198():107494. PubMed ID: 38330548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of assignments of dedicated automated vehicle lanes and inter-vehicle distances of automated vehicle platoons on car-following performance of nearby manual vehicle drivers.
    Chen F; Lu G; Tan H; Liu M; Wan H
    Accid Anal Prev; 2022 Nov; 177():106826. PubMed ID: 36081223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Safety Reinforced Cooperative Adaptive Cruise Control Strategy Accounting for Dynamic Vehicle-to-Vehicle Communication Failure.
    Liu Y; Wang W
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning.
    Irshayyid A; Chen J
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous Controller-Aware Scheduling of Intra-Platoon V2V Communications.
    Sroka P; Ström E; Svensson T; Kliks A
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed Urban Platooning towards High Flexibility, Adaptability, and Stability.
    Jeong S; Baek Y; Son SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feudalistic Platooning: Subdivide Platoons, Unite Networks, and Conquer Efficiency and Reliability.
    Renzler T; Stolz M; Watzenig D
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A longitudinal inter-vehicle distance controller application for autonomous vehicle platoons.
    Gunagwera A; Zengin AT
    PeerJ Comput Sci; 2022; 8():e990. PubMed ID: 35634117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways.
    Yao Z; Hu R; Jiang Y; Xu T
    J Safety Res; 2020 Dec; 75():262-274. PubMed ID: 33334485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the impacts of cooperative adaptive cruise control on reducing rear-end collision risks on freeways.
    Li Y; Wang H; Wang W; Xing L; Liu S; Wei X
    Accid Anal Prev; 2017 Jan; 98():87-95. PubMed ID: 27710775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.