These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36904705)

  • 1. Stress State Classification Based on Deep Neural Network and Electrodermal Activity Modeling.
    Vasile F; Vizziello A; Brondino N; Savazzi P
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network.
    Ganapathy N; Veeranki YR; Kumar H; Swaminathan R
    J Med Syst; 2021 Mar; 45(4):49. PubMed ID: 33660087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolution Neural Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2019; 258():140. PubMed ID: 30942731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Techniques for Arousal Classification from Electrodermal Activity: A Systematic Review.
    Sánchez-Reolid R; López de la Rosa F; Sánchez-Reolid D; López MT; Fernández-Caballero A
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Preliminary Study on Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning.
    Hossain MB; Posada-Quintero HF; Kong Y; McNaboe R; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6920-6923. PubMed ID: 34892695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning.
    P SK; Agastinose Ronickom JF
    Int J Neural Syst; 2024 May; 34(5):2450027. PubMed ID: 38511233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep-Learning Model for Subject-Independent Human Emotion Recognition Using Electrodermal Activity Sensors.
    Al Machot F; Elmachot A; Ali M; Al Machot E; Kyamakya K
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Analysis of Electrodermal Activity Decomposition Methods in Emotion Detection Using Machine Learning.
    Sriram Kumar P ; Govarthan PK; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():73-77. PubMed ID: 37203612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Parametric Classifiers Based Emotion Classification Using Electrodermal Activity and Modified Hjorth Features.
    Veeranki YR; Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2021 May; 281():163-167. PubMed ID: 34042726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry.
    Gilmore J; Nasseri M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Framework for Categorical Emotional States Assessment Using Electrodermal Activity Signals.
    Govarthan PK; Sriram Kumar P ; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 Jun; 305():40-43. PubMed ID: 37386952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Evaluation of Deep Learning Models for Continuous Acute Pain Detection Based on Phasic Electrodermal Activity.
    Pinzon-Arenas JO; Kong Y; Chon KH; Posada-Quintero HF
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4250-4260. PubMed ID: 37399159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of Dichotomous Emotional States Using Electrodermal Activity Signals and Multispectral Analysis.
    Veeranki YR; Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2022 May; 294():941-942. PubMed ID: 35612249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized Deep Bi-LSTM RNN Based Model for Pain Intensity Classification Using EDA Signal.
    Pouromran F; Lin Y; Kamarthi S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The measurement of electrodermal activity].
    Grapperon J; Pignol AC; Vion-Dury J
    Encephale; 2012 Apr; 38(2):149-55. PubMed ID: 22516273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Electrodermal Activity and Speech Analysis towards a more Accurate Emotion Recognition System.
    Greco A; Marzi C; Lanata A; Scilingo EP; Vanello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():229-232. PubMed ID: 31945884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress Detection Through Wrist-Based Electrodermal Activity Monitoring and Machine Learning.
    Zhu L; Spachos P; Ng PC; Yu Y; Wang Y; Plataniotis K; Hatzinakos D
    IEEE J Biomed Health Inform; 2023 May; 27(5):2155-2165. PubMed ID: 37022004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Emotions through Electrodermal Activity in Learning Contexts: A Systematic Review.
    Horvers A; Tombeng N; Bosse T; Lazonder AW; Molenaar I
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity Signals: A Preliminary Study.
    Hossain MB; Posada-Quintero HF; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():325-328. PubMed ID: 36085929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emotional State Estimation using Sensor Fusion of EEG and EDA.
    Yasemin M; Sarikaya MA; Ince G
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5609-5612. PubMed ID: 31947127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.