These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36904775)

  • 1. Combining the YOLOv4 Deep Learning Model with UAV Imagery Processing Technology in the Extraction and Quantization of Cracks in Bridges.
    Kao SP; Chang YC; Wang FL
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle.
    Kim IH; Jeon H; Baek SC; Hong WH; Jung HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridge Crack Inspection Efficiency of an Unmanned Aerial Vehicle System with a Laser Ranging Module.
    Kao SP; Wang FL; Lin JS; Tsai J; Chu YD; Hung PS
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.
    Kim H; Lee J; Ahn E; Cho S; Shin M; Sim SH
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vision and Deep Learning-Based Algorithms to Detect and Quantify Cracks on Concrete Surfaces from UAV Videos.
    Bhowmick S; Nagarajaiah S; Veeraraghavan A
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks.
    Choi D; Bell W; Kim D; Kim J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Detection of Missing Thin Propagating Cracks during Deep-Learning-Based Concrete Crack/Non-Crack Classification.
    Kolappan Geetha G; Yang HJ; Sim SH
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crack Detection of Bridge Concrete Components Based on Large-Scene Images Using an Unmanned Aerial Vehicle.
    Xu Z; Wang Y; Hao X; Fan J
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Binocular Vision-Based Crack Detection and Measurement Method Incorporating Semantic Segmentation.
    Zhang Z; Shen Z; Liu J; Shu J; Zhang H
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Learning Approach for Surface Crack Classification and Segmentation in Unmanned Aerial Vehicle Assisted Infrastructure Inspections.
    Egodawela S; Khodadadian Gostar A; Buddika HADS; Dammika AJ; Harischandra N; Navaratnam S; Mahmoodian M
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of Cracks in Concrete Structures Using an Unmanned Aerial Vehicle.
    Woo HJ; Seo DM; Kim MS; Park MS; Hong WH; Baek SC
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crack Detection and Analysis of Concrete Structures Based on Neural Network and Clustering.
    Choi Y; Park HW; Mi Y; Song S
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38543988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crack detection for concrete bridges with imaged based deep learning.
    Wan C; Xiong X; Wen B; Gao S; Fang D; Yang C; Xue S
    Sci Prog; 2022; 105(4):368504221128487. PubMed ID: 36177737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Real-Time Autonomous Crack Inspection System Based on Unmanned Aerial Vehicles.
    Tse KW; Pi R; Sun Y; Wen CY; Feng Y
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique.
    Kim B; Cho S
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer Vision and Augmented Reality for Human-Centered Fatigue Crack Inspection.
    Mojidra R; Li J; Mohammadkhorasani A; Moreu F; Bennett C; Collins W
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated crack segmentation via saturation channel thresholding, area classification and fusion of modified level set segmentation with Canny edge detection.
    Nnolim UA
    Heliyon; 2020 Dec; 6(12):e05748. PubMed ID: 33376821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DRA-UNet for Coal Mining Ground Surface Crack Delineation with UAV High-Resolution Images.
    Wang W; Du W; Song X; Chen S; Zhou H; Zhang H; Zou Y; Zhu J; Cheng C
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Tooth Crack Image Analysis with Multiple Deep Learning Approaches.
    Li Z; Li Z; Zhang Y; Wang H; Li X; Zhang J; Zaid W; Yao S; Xu J
    Ann Biomed Eng; 2024 Sep; ():. PubMed ID: 39242442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-Aided Bridge Deck Crack Condition State Assessment Using Artificial Intelligence.
    Zhang X; Wogen BE; Liu X; Iturburu L; Salmeron M; Dyke SJ; Poston R; Ramirez JA
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.