These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36904901)

  • 21. Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
    Ashraf NM; Mostafa RR; Sakr RH; Rashad MZ
    PLoS One; 2021; 16(6):e0252754. PubMed ID: 34111168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intermediate Sensory Feedback Assisted Multi-Step Neural Decoding for Reinforcement Learning Based Brain-Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Yu Z; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2834-2844. PubMed ID: 36219654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement.
    Kim KM; Baratta MV; Yang A; Lee D; Boyden ES; Fiorillo CD
    PLoS One; 2012; 7(4):e33612. PubMed ID: 22506004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Deep Learning Approach for Biped Robot Locomotion Interface Using a Single Inertial Sensor.
    Alemayoh TT; Lee JH; Okamoto S
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orientation-Preserving Rewards' Balancing in Reinforcement Learning.
    Ren J; Guo S; Chen F
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6458-6472. PubMed ID: 34115593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing relationships between reinforcement learning and simple behavioral strategies to understand probabilistic reward learning.
    Iyer ES; Kairiss MA; Liu A; Otto AR; Bagot RC
    J Neurosci Methods; 2020 Jul; 341():108777. PubMed ID: 32417532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A dynamic approach to support outbreak management using reinforcement learning and semi-connected SEIQR models.
    Kao Y; Chu PJ; Chou PC; Chen CC
    BMC Public Health; 2024 Mar; 24(1):751. PubMed ID: 38462635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating Reward Function from Medial Prefrontal Cortex Cortical Activity using Inverse Reinforcement Learning.
    Tan J; Shen X; Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3346-3349. PubMed ID: 36086257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments.
    George TM; Rastogi M; de Cothi W; Clopath C; Stachenfeld K; Barry C
    Elife; 2024 Feb; 13():. PubMed ID: 38334473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-density EMG, IMU, kinetic, and kinematic open-source data for comprehensive locomotion activities.
    Dimitrov H; Bull AMJ; Farina D
    Sci Data; 2023 Nov; 10(1):789. PubMed ID: 37949938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence.
    Gold JM; Waltz JA; Matveeva TM; Kasanova Z; Strauss GP; Herbener ES; Collins AG; Frank MJ
    Arch Gen Psychiatry; 2012 Feb; 69(2):129-38. PubMed ID: 22310503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Momentary subjective well-being depends on learning and not reward.
    Blain B; Rutledge RB
    Elife; 2020 Nov; 9():. PubMed ID: 33200989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The value-complexity trade-off for reinforcement learning based brain-computer interfaces.
    Levi-Aharoni H; Tishby N
    J Neural Eng; 2021 Feb; 17(6):066011. PubMed ID: 33586668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A self-learning cognitive architecture exploiting causality from rewards.
    Li H; Dou R; Keil A; Principe JC
    Neural Netw; 2022 Jun; 150():274-292. PubMed ID: 35339009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reinforcement Q-Learning Control With Reward Shaping Function for Swing Phase Control in a Semi-active Prosthetic Knee.
    Hutabarat Y; Ekkachai K; Hayashibe M; Kongprawechnon W
    Front Neurorobot; 2020; 14():565702. PubMed ID: 33324190
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.