BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36904994)

  • 1. Wave Equation Modeling via Physics-Informed Neural Networks: Models of Soft and Hard Constraints for Initial and Boundary Conditions.
    Alkhadhr S; Almekkawy M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-informed neural networks for transcranial ultrasound wave propagation.
    Wang L; Wang H; Liang L; Li J; Zeng Z; Liu Y
    Ultrasonics; 2023 Jul; 132():107026. PubMed ID: 37137219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation.
    Alkhadhr S; Almekkawy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics.
    Wu W; Daneker M; Jolley MA; Turner KT; Lu L
    Appl Math Mech; 2023 Jul; 44(7):1039-1068. PubMed ID: 37501681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FDM data driven U-Net as a 2D Laplace PINN solver.
    Maria Antony AN; Narisetti N; Gladilin E
    Sci Rep; 2023 Jun; 13(1):9116. PubMed ID: 37277366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics-informed neural networks to solve lumped kinetic model for chromatography process.
    Tang SY; Yuan YH; Chen YC; Yao SJ; Wang Y; Lin DQ
    J Chromatogr A; 2023 Oct; 1708():464346. PubMed ID: 37716084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of high-speed angiography HSA-derived boundary conditions and Physics Informed Neural Networks (PINNs) for comprehensive estimation of neurovascular hemodynamics.
    Williams KA; Shields A; Bhurwani MMS; Nagesh SVS; Bednarek DR; Rudin S; Ionita CN
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12463():. PubMed ID: 37424833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave-packet behaviors of the defocusing nonlinear Schrödinger equation based on the modified physics-informed neural networks.
    Zhang S; Lan P; Su JJ
    Chaos; 2021 Nov; 31(11):113107. PubMed ID: 34881580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The improved backward compatible physics-informed neural networks for reducing error accumulation and applications in data-driven higher-order rogue waves.
    Lin S; Chen Y
    Chaos; 2024 Mar; 34(3):. PubMed ID: 38526983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient Statistics-Based Multi-Objective Optimization in Physics-Informed Neural Networks.
    Vemuri SK; Denzler J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of phase transition and time-varying dynamics of the (2+1)-dimensional Boussinesq equation by parameter-integrated physics-informed neural networks with phase domain decomposition.
    Liu H; Wang L; Zhang Y; Lu G; Liu L
    Phys Rev E; 2023 Oct; 108(4-2):045303. PubMed ID: 37978704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. nn-PINNs: Non-Newtonian physics-informed neural networks for complex fluid modeling.
    Mahmoudabadbozchelou M; Karniadakis GE; Jamali S
    Soft Matter; 2021 Dec; 18(1):172-185. PubMed ID: 34859251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor.
    Tarkhov D; Lazovskaya T; Malykhina G
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The New Simulation of Quasiperiodic Wave, Periodic Wave, and Soliton Solutions of the KdV-mKdV Equation via a Deep Learning Method.
    Zhang Y; Dong H; Sun J; Wang Z; Fang Y; Kong Y
    Comput Intell Neurosci; 2021; 2021():8548482. PubMed ID: 34868298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On acoustic fields of complex scatters based on physics-informed neural networks.
    Wang H; Li J; Wang L; Liang L; Zeng Z; Liu Y
    Ultrasonics; 2023 Feb; 128():106872. PubMed ID: 36323059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Voltammetry Using Physics-Informed Neural Networks.
    Chen H; Kätelhön E; Compton RG
    J Phys Chem Lett; 2022 Jan; 13(2):536-543. PubMed ID: 35007069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physics-informed neural network for acoustic resonance analysis in a one-dimensional acoustic tube.
    Yokota K; Kurahashi T; Abe M
    J Acoust Soc Am; 2024 Jul; 156(1):30-43. PubMed ID: 38949289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Scalable Tanh (Stan): Multi-Scale Solutions for Physics-Informed Neural Networks.
    Gnanasambandam R; Shen B; Chung J; Yue X; Kong Z
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):15588-15603. PubMed ID: 37610913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified failproof physics-informed neural network framework for fast and accurate optical fiber transmission link modeling.
    Uduagbomen J; Leeson MS; Liu Z; Lakshminarayana S; Xu T
    Appl Opt; 2024 May; 63(14):3794-3802. PubMed ID: 38856342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.