These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36905214)

  • 41. A Plasmon Resonance Enhanced Photo-Electrode to Promote NH
    Wang H; Cheng C; Du K; Xu Z; Zhao E; Lan N; Yin PF; Ling T
    Chemistry; 2023 May; 29(25):e202300204. PubMed ID: 36941243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MXene-Derived Nanocomposites as Earth-Abundant Efficient Electrocatalyst for Nitrogen Reduction Reaction under Ambient Conditions.
    Zhao G; Wang X; Xu C
    Inorg Chem; 2020 Nov; 59(22):16672-16678. PubMed ID: 33124801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defective S/N co-doped carbon cloth
    Cheng S; Li C; Yu Z; Sun Y; Li L; Yang J
    RSC Adv; 2020 Mar; 10(17):9814-9823. PubMed ID: 35498575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Atomically Dispersed Uranium Enables an Unprecedentedly High NH
    Zhao Y; Qu J; Li H; Li P; Liu T; Chen Z; Zhai T
    Nano Lett; 2022 Jun; 22(11):4475-4481. PubMed ID: 35604434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spinel LiMn
    Li C; Yu J; Yang L; Zhao J; Kong W; Wang T; Asiri AM; Li Q; Sun X
    Inorg Chem; 2019 Aug; 58(15):9597-9601. PubMed ID: 31313568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitrogen-Defective Polymeric Carbon Nitride Nanolayer Enabled Efficient Electrocatalytic Nitrogen Reduction with High Faradaic Efficiency.
    Peng G; Wu J; Wang M; Niklas J; Zhou H; Liu C
    Nano Lett; 2020 Apr; 20(4):2879-2885. PubMed ID: 32212665
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS
    Zhang L; Ji X; Ren X; Ma Y; Shi X; Tian Z; Asiri AM; Chen L; Tang B; Sun X
    Adv Mater; 2018 Jul; 30(28):e1800191. PubMed ID: 29808517
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A perovskite La
    Yu J; Li C; Li B; Zhu X; Zhang R; Ji L; Tang D; Asiri AM; Sun X; Li Q; Liu S; Luo Y
    Chem Commun (Camb); 2019 May; 55(45):6401-6404. PubMed ID: 31094366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites.
    Chen Y; Guo R; Peng X; Wang X; Liu X; Ren J; He J; Zhuo L; Sun J; Liu Y; Wu Y; Luo J
    ACS Nano; 2020 Jun; 14(6):6938-6946. PubMed ID: 32510924
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions.
    Wang D; Azofra LM; Harb M; Cavallo L; Zhang X; Suryanto BHR; MacFarlane DR
    ChemSusChem; 2018 Oct; 11(19):3416-3422. PubMed ID: 30091299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mn
    Wu X; Xia L; Wang Y; Lu W; Liu Q; Shi X; Sun X
    Small; 2018 Nov; 14(48):e1803111. PubMed ID: 30334346
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly efficient metal-free borocarbonitride catalysts for electrochemical reduction of N
    Shi L; Bi S; Qi Y; Ning G; Ye J
    J Colloid Interface Sci; 2023 Jul; 641():577-584. PubMed ID: 36963251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorine-Stabilized Defective Black Phosphorene as a Lithium-Like Catalyst for Boosting Nitrogen Electroreduction to Ammonia.
    Liu H; Hai G; Ding LX; Wang H
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202302124. PubMed ID: 36864648
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Atomically Dispersed Zinc(I) Active Sites to Accelerate Nitrogen Reduction Kinetics for Ammonia Electrosynthesis.
    Kong Y; Li Y; Sang X; Yang B; Li Z; Zheng S; Zhang Q; Yao S; Yang X; Lei L; Zhou S; Wu G; Hou Y
    Adv Mater; 2022 Jan; 34(2):e2103548. PubMed ID: 34725867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient Electrocatalytic Nitrogen Reduction to Ammonia on Ultrafine Sn Nanoparticles.
    Xue Z; Sun C; Zhao M; Cui Y; Qu Y; Ma H; Wang Z; Jiang Q
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59834-59842. PubMed ID: 34894652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial N
    Zhao L; Zhao J; Zhao J; Zhang L; Wu D; Wang H; Li J; Ren X; Wei Q
    Nanotechnology; 2020 May; 31(29):29LT01. PubMed ID: 32191924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency.
    Zhang C; Wang Z; Lei J; Ma L; Yakobson BI; Tour JM
    Small; 2022 Apr; 18(15):e2106327. PubMed ID: 35278039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ambient N
    Liu Q; Zhang X; Zhang B; Luo Y; Cui G; Xie F; Sun X
    Nanoscale; 2018 Aug; 10(30):14386-14389. PubMed ID: 30027985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust Photoelectrochemical Route for the Ambient Fixation of Dinitrogen into Ammonia over a Nanojunction Assembled from Ceria and an Iron Boride/Phosphide Cocatalyst.
    Sultana S; Paramanik L; Mansingh S; Parida K
    Inorg Chem; 2022 Jan; 61(1):131-140. PubMed ID: 34936349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A General Strategy to Glassy M-Te (M = Ru, Rh, Ir) Porous Nanorods for Efficient Electrochemical N
    Wang J; Huang B; Ji Y; Sun M; Wu T; Yin R; Zhu X; Li Y; Shao Q; Huang X
    Adv Mater; 2020 Mar; 32(11):e1907112. PubMed ID: 32020715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.