These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36905245)

  • 1. Hot Spot Engineering in Hierarchical Plasmonic Nanostructures.
    Yang X; Su D; Yu X; Zeng P; Liang H; Zhang G; Song B; Jiang S
    Small; 2023 Jun; 19(22):e2205659. PubMed ID: 36905245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite-Scattering Plasmonic Nanoprobes for Label-Free, Quantitative Biomolecular Sensing.
    Zhang C; Paria D; Semancik S; Barman I
    Small; 2019 Sep; 15(38):e1901165. PubMed ID: 31394029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large electromagnetic field enhancement in plasmonic nanoellipse for tunable spaser based applications.
    Jamil S; Farooq W; Ullah N; Daud Khan A; Khalil UK; Mosavi A
    PLoS One; 2022; 17(3):e0263630. PubMed ID: 35298478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array.
    Wu HY; Choi CJ; Cunningham BT
    Small; 2012 Sep; 8(18):2878-85. PubMed ID: 22761112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications.
    Park M; Hwang CSH; Jeong KH
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS.
    Niu R; Gao F; Wang D; Zhu D; Su S; Chen S; YuWen L; Fan C; Wang L; Chao J
    ACS Nano; 2022 Sep; 16(9):14622-14631. PubMed ID: 36083609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.
    Wang Y; Wang H; Wang Y; Shen Y; Xu S; Xu W
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15623-9. PubMed ID: 27250862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography.
    Kang M; Park Y; Lee H; Lee C; Park JY
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33607643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured plasmonic substrates for use as SERS sensors.
    Jeon TY; Kim DJ; Park SG; Kim SH; Kim DH
    Nano Converg; 2016; 3(1):18. PubMed ID: 28191428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond Direct Laser-Induced Assembly of Monolayer of Gold Nanostructures with Tunable Surface Plasmon Resonance and High Performance Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering Sensing.
    Jradi S; Zaarour L; Chehadi Z; Akil S; Plain J
    Langmuir; 2018 Dec; 34(51):15763-15772. PubMed ID: 30481036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Explosives by SERS Platform Using Metal Nanogap Substrates.
    Adhikari S; Ampadu EK; Kim M; Noh D; Oh E; Lee D
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.