These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36905463)

  • 1. Traversing DNA-Protein Interactions Between Mesophilic and Thermophilic Bacteria: Implications from Their Cold Shock Response.
    Roy A; Ray S
    Mol Biotechnol; 2024 Apr; 66(4):824-844. PubMed ID: 36905463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyr51: Key Determinant of the Low Thermostability of the Colwellia psychrerythraea Cold-Shock Protein.
    Lee Y; Kwak C; Jeong KW; Durai P; Ryu KS; Kim EH; Cheong C; Ahn HC; Kim HJ; Kim Y
    Biochemistry; 2018 Jul; 57(26):3625-3640. PubMed ID: 29737840
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Suman ; Chaudhary M; Nain V
    J Biomol Struct Dyn; 2021 Feb; 39(3):841-850. PubMed ID: 31959085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and interaction of Corynebacterium pseudotuberculosis cold shock protein A with Y-box single-stranded DNA fragment.
    Caruso IP; Panwalkar V; Coronado MA; Dingley AJ; Cornélio ML; Willbold D; Arni RK; Eberle RJ
    FEBS J; 2018 Jan; 285(2):372-390. PubMed ID: 29197185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock.
    Czapski TR; Trun N
    Gene; 2014 Aug; 547(1):91-7. PubMed ID: 24952137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus.
    Jin B; Jeong KW; Kim Y
    Biochem Biophys Res Commun; 2014 Aug; 451(3):402-7. PubMed ID: 25101648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of the charged residues mutation S48E/N62H on the thermostability and unfolding behavior of cold shock protein: insights from molecular dynamics simulation with Gō model.
    Su JG; Han XM; Zhao SX; Hou YX; Li XY; Qi LS; Wang JH
    J Mol Model; 2016 Apr; 22(4):91. PubMed ID: 27021210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Stress Response that Monitors and Regulates mRNA Structure Is Central to Cold Shock Adaptation.
    Zhang Y; Burkhardt DH; Rouskin S; Li GW; Weissman JS; Gross CA
    Mol Cell; 2018 Apr; 70(2):274-286.e7. PubMed ID: 29628307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of cold shock proteins in archaea.
    Giaquinto L; Curmi PM; Siddiqui KS; Poljak A; DeLong E; DasSarma S; Cavicchioli R
    J Bacteriol; 2007 Aug; 189(15):5738-48. PubMed ID: 17545280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and dynamic features of cold-shock proteins of Listeria monocytogenes, a psychrophilic bacterium.
    Lee J; Jeong KW; Jin B; Ryu KS; Kim EH; Ahn JH; Kim Y
    Biochemistry; 2013 Apr; 52(14):2492-504. PubMed ID: 23506337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there an en route folding intermediate for Cold shock proteins?
    Huang L; Shakhnovich EI
    Protein Sci; 2012 May; 21(5):677-85. PubMed ID: 22467601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common mode of DNA binding to cold shock domains. Crystal structure of hexathymidine bound to the domain-swapped form of a major cold shock protein from Bacillus caldolyticus.
    Max KE; Zeeb M; Bienert R; Balbach J; Heinemann U
    FEBS J; 2007 Mar; 274(5):1265-79. PubMed ID: 17266726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA binding and chaperone activity of the E. coli cold-shock protein CspA.
    Rennella E; Sára T; Juen M; Wunderlich C; Imbert L; Solyom Z; Favier A; Ayala I; Weinhäupl K; Schanda P; Konrat R; Kreutz C; Brutscher B
    Nucleic Acids Res; 2017 Apr; 45(7):4255-4268. PubMed ID: 28126922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of cold shock proteins on transcription and translation studied in cell-free model systems.
    Hofweber R; Horn G; Langmann T; Balbach J; Kremer W; Schmitz G; Kalbitzer HR
    FEBS J; 2005 Sep; 272(18):4691-702. PubMed ID: 16156790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Electrostatics and Folding Kinetics on the Thermostability of Homologous Cold Shock Proteins.
    Ferreira PHB; Freitas FC; McCully ME; Slade GG; de Oliveira RJ
    J Chem Inf Model; 2020 Feb; 60(2):546-561. PubMed ID: 31910002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thermostability of DNA-binding protein HU from mesophilic, thermophilic, and extreme thermophilic bacteria.
    Christodoulou E; Vorgias CE
    Extremophiles; 2002 Feb; 6(1):21-31. PubMed ID: 11878558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Phylogeny and Evolution of Cold Shock Proteins: From Enteropathogenic
    Yu T; Keto-Timonen R; Jiang X; Virtanen JP; Korkeala H
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31434224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostability of multidomain proteins: elongation factors EF-Tu from Escherichia coli and Bacillus stearothermophilus and their chimeric forms.
    Sanderová H; Hůlková M; Malon P; Kepková M; Jonák J
    Protein Sci; 2004 Jan; 13(1):89-99. PubMed ID: 14691225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CspB of an arctic bacterium, Polaribacter irgensii KOPRI 22228, confers extraordinary freeze-tolerance.
    Jung YH; Lee YK; Lee HK; Lee K; Im H
    Braz J Microbiol; 2018; 49(1):97-103. PubMed ID: 28807609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.