BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36905512)

  • 1. In Vitro Generation of Murine CD8α
    Kirkling ME; Reizis B
    Methods Mol Biol; 2023; 2618():109-119. PubMed ID: 36905512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Notch Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells.
    Kirkling ME; Cytlak U; Lau CM; Lewis KL; Resteu A; Khodadadi-Jamayran A; Siebel CW; Salmon H; Merad M; Tsirigos A; Collin M; Bigley V; Reizis B
    Cell Rep; 2018 Jun; 23(12):3658-3672.e6. PubMed ID: 29925006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of cDC-like cells from human induced pluripotent stem cells via Notch signaling.
    Makino K; Long MD; Kajihara R; Matsueda S; Oba T; Kanehira K; Liu S; Ito F
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35101945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Generation of Human XCR1(+) Dendritic Cells from CD34(+) Hematopoietic Progenitors.
    Balan S; Dalod M
    Methods Mol Biol; 2016; 1423():19-37. PubMed ID: 27142006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OP9-DL1 cell co-culture enhances anti-tumour immunity of mouse bone marrow-derived dendritic cells.
    Feng F; Yang J; Tong L; Yuan S; Tian Y; Hong L; Wang W; Zhang H
    Cell Biol Int; 2012 Mar; 36(3):297-303. PubMed ID: 21906030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XCR1 expression distinguishes human conventional dendritic cell type 1 with full effector functions from their immediate precursors.
    Heger L; Hatscher L; Liang C; Lehmann CHK; Amon L; Lühr JJ; Kaszubowski T; Nzirorera R; Schaft N; Dörrie J; Irrgang P; Tenbusch M; Kunz M; Socher E; Autenrieth SE; Purbojo A; Sirbu H; Hartmann A; Alexiou C; Cesnjevar R; Dudziak D
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2300343120. PubMed ID: 37566635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1.
    Yamazaki C; Sugiyama M; Ohta T; Hemmi H; Hamada E; Sasaki I; Fukuda Y; Yano T; Nobuoka M; Hirashima T; Iizuka A; Sato K; Tanaka T; Hoshino K; Kaisho T
    J Immunol; 2013 Jun; 190(12):6071-82. PubMed ID: 23670193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How?
    Cancel JC; Crozat K; Dalod M; Mattiuz R
    Front Immunol; 2019; 10():9. PubMed ID: 30809220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Pig Conventional Dendritic Cells From Bone Marrow Hematopoietic Cells
    Li Y; Puebla-Clark L; Hernández J; Díaz I; Mateu E
    Front Immunol; 2020; 11():553859. PubMed ID: 33162975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro differentiation of adult bone marrow progenitors into antigen-specific CD4 helper T cells using engineered stromal cells expressing a notch ligand and a major histocompatibility complex class II protein.
    Dai B; Wang P
    Stem Cells Dev; 2009 Mar; 18(2):235-45. PubMed ID: 18680390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of large numbers of highly purified dendritic cells from bone marrow progenitor cells after co-culture with syngeneic murine splenocytes.
    Kalantari T; Kamali-Sarvestani E; Zhang GX; Safavi F; Lauretti E; Khedmati ME; Rostami A
    Exp Mol Pathol; 2013 Apr; 94(2):336-42. PubMed ID: 23269574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen.
    Wculek SK; Amores-Iniesta J; Conde-Garrosa R; Khouili SC; Melero I; Sancho D
    J Immunother Cancer; 2019 Apr; 7(1):100. PubMed ID: 30961656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conventional Type 1 Dendritic Cells in Intestinal Immune Homeostasis.
    Sasaki I; Kato T; Hemmi H; Fukuda-Ohta Y; Wakaki-Nishiyama N; Yamamoto A; Kaisho T
    Front Immunol; 2022; 13():857954. PubMed ID: 35693801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus.
    Fossum E; Grødeland G; Terhorst D; Tveita AA; Vikse E; Mjaaland S; Henri S; Malissen B; Bogen B
    Eur J Immunol; 2015 Feb; 45(2):624-35. PubMed ID: 25410055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced in vitro type 1 conventional dendritic cell generation via the recruitment of hematopoietic stem cells and early progenitors by Kit ligand.
    Ou F; Ferris ST; Kim S; Wu R; Anderson DA; Liu TT; Jo S; Chen MY; Gillanders WE; Murphy TL; Murphy KM
    Eur J Immunol; 2023 Sep; 53(9):e2250201. PubMed ID: 37424050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Cre-Expressing Mouse Strains Permitting to Selectively Track and Edit Type 1 Conventional Dendritic Cells Facilitate Disentangling Their Complexity
    Mattiuz R; Wohn C; Ghilas S; Ambrosini M; Alexandre YO; Sanchez C; Fries A; Vu Manh TP; Malissen B; Dalod M; Crozat K
    Front Immunol; 2018; 9():2805. PubMed ID: 30564233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of Type 1 Porcine Reproductive and Respiratory Syndrome Virus With
    Li Y; Mateu E
    Front Immunol; 2021; 12():674185. PubMed ID: 34177915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Batf3-independent langerin- CX3CR1- CD8α+ splenic DCs represent a precursor for classical cross-presenting CD8α+ DCs.
    Petersen TR; Knight DA; Tang CW; Osmond TL; Hermans IF
    J Leukoc Biol; 2014 Dec; 96(6):1001-10. PubMed ID: 25170118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and expression of DEC205 in the cDC1 and cDC2 subsets of porcine dendritic cells from spleen, tonsil, and submaxillary and mesenteric lymph nodes.
    Parra-Sánchez H; Puebla-Clark L; Reséndiz M; Valenzuela O; Hernández J
    Mol Immunol; 2018 Apr; 96():1-7. PubMed ID: 29433077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases.
    Specht JM; Wang G; Do MT; Lam JS; Royal RE; Reeves ME; Rosenberg SA; Hwu P
    J Exp Med; 1997 Oct; 186(8):1213-21. PubMed ID: 9334360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.